K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2023

Vì MN // BC theo Talet ta có:

\(\dfrac{y}{20}\) =  \(\dfrac{10}{15}\)  = \(\dfrac{x}{12}\) => x = \(\dfrac{10}{15}\) . 12 = 8;   y = \(\dfrac{10}{15}\) . 20 = \(\dfrac{40}{3}\)

 

21 tháng 2 2019

Ta có: MN//BC ⇒ AM/ AB = AN/AC ⇔ 2/5 = 1,5/x ⇒ x = 3.75

Chọn đáp án C.

5 tháng 11 2018

Ta có: MN//BC ⇒ AM/AB = AN/AC ⇔ 2/5 = 1,5/x ⇒ x = 5.1,5/2 = 3,75

Chọn đáp án C.

17 tháng 3 2017

Ta có: MN // BC (gt), áp dụng hệ quả của định lý Ta – lét suy ra:

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

28 tháng 10 2021

undefined

28 tháng 10 2021

cảm ơn bạn nhiều nha

 

Bạn cập nhật lại hình ảnh vẽ nhé

2 tháng 3 2022

undefined

12 tháng 7 2017

Trong ΔABC, ta có: MN // BC (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy NC = AC – AN = 18 – 12 = 6(cm)

Áp dụng định lí Pi-ta-go vào tam giác vuông AMN, ta có:

M N 2 = A M 2 + A N 2 = 16 2 + 12 2  = 400

MN = 20cm

Trong ΔABC, ta có: MN // BC (gt)

Suy ra:Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy:Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Xét tam giác OAB có \(\frac{{OM}}{{MA}} = \frac{{ON}}{{NB}}\) (Định lý Thales)

Xét tam giác OBC có \(\frac{{OP}}{{PC}} = \frac{{ON}}{{NB}}\) (Định lý Thales)

Từ đó ta có \(\frac{{OM}}{{MA}} = \frac{{OP}}{{PC}}\).

Xét tam giác OAC với \(\frac{{OM}}{{MA}} = \frac{{OP}}{{PC}} \Rightarrow MP\parallel AC\) (Hệ quả của định lý Thales).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có: \(M\) là trung điểm của \(AC\)

\(Q\) là trung điểm của \(BC\)

\( \Rightarrow MQ\) là đường trung bình của tam giác \(ABC\)

\(\left. \begin{array}{l} \Rightarrow MQ\parallel AB\\AB \subset \left( {ABA'} \right)\end{array} \right\} \Rightarrow MQ\parallel \left( {ABA'} \right)\)

\(M\) là trung điểm của \(AC\)

\(P\) là trung điểm của \(A'C'\)

\( \Rightarrow MP\) là đường trung bình của hình bình hành \(ACC'A'\)

\(\left. \begin{array}{l} \Rightarrow MP\parallel AA'\\AA' \subset \left( {ABA'} \right)\end{array} \right\} \Rightarrow MP\parallel \left( {ABA'} \right)\)

\(\left. \begin{array}{l}MQ\parallel \left( {ABA'} \right)\\MP\parallel \left( {ABA'} \right)\\MP,MQ \subset \left( {MPQ} \right)\end{array} \right\} \Rightarrow \left( {MPQ} \right)\parallel \left( {ABA'} \right)\)

Chọn D.