Câu 3 (1,0 điểm) Cho tam giác ABC có đường cao AH, góc C< góc B < 90* , M là điểm nằm giữa H và B; N là điểm thuộc đường thẳng BC nhưng không thuộc đoạn BC.Chứng minh:
a) AB + HB < AC + HC
b) AM < AB < AN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này hay đó
tg AHM vuong tai H có A +M = 90 ; M = 2A
=> M =60; A =30
Từ đó tg ABC có A= 90; B = 60; C=30
( học là phải suy nghĩ.....)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=BC^2-AC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot12=8\cdot4\sqrt{5}=32\sqrt{5}\)
\(\Leftrightarrow AH=\dfrac{32\sqrt{5}}{12}=\dfrac{8\sqrt{5}}{3}cm\)
Vậy: \(AB=4\sqrt{5}cm\); \(AH=\dfrac{8\sqrt{5}}{3}cm\)
c)
Ta có: D và C đối xứng nhau qua A(gt)
nên A là trung điểm của DC
Xét ΔBDC có
BA là đường cao ứng với cạnh DC(BA⊥DC)
BA là đường trung tuyến ứng với cạnh DC(A là trung điểm của DC)
Do đó: ΔBDC cân tại B(Định lí tam giác cân)
⇒\(\widehat{D}=\widehat{C}\)
Xét ΔADE vuông tại E và ΔACH vuông tại H có
AD=AC(A là trung điểm của DC)
\(\widehat{D}=\widehat{C}\)(cmt)
Do đó: ΔADE=ΔACH(cạnh huyền-góc nhọn)
⇒AE=AH(hai cạnh tương ứng)
mà AH là bán kính của đường tròn (A;AH)
nên AE là bán kính của đường tròn (A;AH)
Xét (A;AH) có
AE là bán kính(cmt)
AE⊥BD tại E(gt)
Do đó: BD là tiếp tuyến của đường tròn(A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
\(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)
\(BH=\sqrt{3^2-2.4^2}=1.8\left(cm\right)\)
CH=BC-HB=5-1,8=3,2(cm)
a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
b: Gọi K là giao của CM và AH
Xét ΔAKC có
AM,Ch là đường cao
AM cắt CH tại D
=>D là trực tâm
=>KD vuông góc AC
=>K,D,E thẳng hàng
=>AH,ED,CM đồng quy
a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
b: Gọi K là giao của CM và AH
Xét ΔAKC có
AM,Ch là đường cao
AM cắt CH tại D
=>D là trực tâm
=>KD vuông góc AC
=>K,D,E thẳng hàng
=>AH,ED,CM đồng quy