cho (p) : y=x^2,(d);y=2x+3 cho điểm C nằm trên parabol có hoành độ bằng 2 tính diện tích tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l} - 2{x^3}{y^4}:D = x{y^2}\\ \Rightarrow D = - 2{x^3}{y^4}:x{y^2} = - 2{x^2}{y^2}\end{array}\)
\(\begin{array}{l}\left( {10{x^5}{y^2} - 6{x^3}{y^4} + 8{x^2}{y^5}} \right):\left( { - 2{x^2}{y^2}} \right)\\ = \left( {10{x^5}{y^2}} \right):\left( { - 2{x^2}{y^2}} \right) - \left( {6{x^3}{y^4}} \right):\left( { - 2{x^2}{y^2}} \right) + \left( {8{x^2}{y^5}} \right):\left( { - 2{x^2}{y^2}} \right)\\ = - 5{x^3} + 3x{y^2} - 4{y^3}\end{array}\)
Bài 2:
\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)
\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)
Bài 1:
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
d) \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)
a) Ta có : \(\left(x+y\right)^3=1^3=1\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Leftrightarrow x^3+y^3+3xy=1\) ( do x + y = 1 )
1.
Ta có :
x+y=1
=> ( x+y) 2 = 12 = 1
<=> x2 + 2xy +y2 = 1
mà x2+y2 = 13
<=> 2xy = 1 -13 = -12
<=> xy = -6
Ta lại có :
x3 +y3 = (x+y)(x2 + y2 -xy )
mà x+y = 1 ; x2 + y2 = 13 ; xy = -6
=> x3 + y3 = 1 [ 13 - (- 6)]
=> x3 + y3 = 1(13+6)
=> x3 +y3 = 19
Lời giải:
\(D=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+xy+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+xy+y^2}\)
\(=\frac{x^2+xy+y^2}{xy}+\frac{xy}{x^2+xy+y^2}-1\)
\(\frac{x^2+xy+y^2}{9xy}+\frac{xy}{x^2+xy+y^2}+\frac{8(x^2+xy+y^2)}{9xy}-1\)
Áp dụng BĐT Cô-si:
\(\frac{x^2+xy+y^2}{9xy}+\frac{xy}{x^2+xy+y^2}\geq 2\sqrt{\frac{x^2+xy+y^2}{9xy}.\frac{xy}{x^2+xy+y^2}}=\frac{2}{3}\)
\(x^2+y^2\geq 2xy\Rightarrow \frac{8(x^2+xy+y^2)}{9xy}\geq \frac{8.3xy}{9xy}=\frac{8}{3}\)
\(\Rightarrow D\geq \frac{2}{3}+\frac{8}{3}-1=\frac{7}{3}=D_{\min}\)
Dấu "=" xảy ra khi $x=y$