a)1/24+1/60+1/120+...+1/6840
b)1.2+2.3+3.4+2010.2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A= 1.2.3+2.3.3+3.4.3+...........+2010.2011.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+.........+2010.2011.(2012-2009)
=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+2010.2011.2012-2009.2010.2011
=>3A=2010.2011.2012
=>3A=3.670.2011.2012
=>A=670.2011.2012
=>A= .......lấy máy tính mà tính
a=1.2 + 2.3 +3.4+ ...+ 2010.2011\
3a=1.2.3+2.3.3+3.4.3+......+2010.2011.3
3a=1.2.3+2.3.(4-1)+3.4.(5-1)+............+2010.2011.(2012-2009)
3a=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+2010.2011.2012-2009.2010.2011
3a=2010.2011.2012
a=2010.2011.2012:3
a=?
3B = 1.2.3 + 2.3.(4-1) + ... +2010.2011.(2012-2009)
3B = 1.2.3 + 2.3.4 - 1.2.3 + ..... +2010.2011.2012-2009.2010.2011
3B = 2010.2011.2012
B = 2010.2011.2012:3
B = 2710908440
3B = 1.2.3 + 2.3.(4-1) + ... +2010.2011.(2012-2009)
3B = 1.2.3 + 2.3.4 - 1.2.3 + ..... +2010.2011.2012-2009.2010.2011
3B = 2010.2011.2012
B = 2010.2011.2012:3
B = 2710908440
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{59.60}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{59}-\dfrac{1}{60}=1-\dfrac{1}{60}=\dfrac{59}{60}\)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{59\cdot60}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{59}-\dfrac{1}{60}\)
\(=1-\dfrac{1}{60}=\dfrac{59}{60}\)
a) \(A=\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+...+\frac{1}{10200}\)
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{100.102}\)
\(2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{100.102}\)
\(2A=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{8}\right)+...+\left(\frac{1}{100}-\frac{1}{102}\right)\)
\(2A=\frac{1}{2}-\frac{1}{102}\)
\(2A=\frac{25}{51}\)
\(A=\frac{25}{51}:2\)
\(A=\frac{25}{102}\)
Vậy \(\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+...+\frac{1}{10200}=\frac{25}{102}\)
b) \(B=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{2015.2016}\)
\(B=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right)\)
\(B=3.\left[\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{2015}-\frac{1}{2016}\right)\right]\)
\(B=3.\left(\frac{1}{1}-\frac{1}{2016}\right)\)
\(B=3.\frac{2015}{2016}\)
\(B=\frac{2015}{672}\)
Vậy \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{2015.2016}=\frac{2015}{672}\)
b)
A=1.2+2.3+3.4+...+2010.2011
3A=1.2.3+2.3.3+3.4.3+...+2010.2011.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2010.2011.(2012-2009)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-2009.2010.2011+2010.2011.2012
=2010.2011.2012
=>A=2010.2011.2012 / 3
=2710908440