K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2014

A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1 

B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2 

Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24

20 tháng 7 2016

cại đcm may

2 tháng 1 2018

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

3 tháng 1 2018

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2

19 tháng 12 2016

ldigh;df

3 tháng 3 2020

\(\left(1+x\right)^3+\left(1-x\right)^3-6x\left(x+1\right)=6\)

\(\Leftrightarrow1+3x+3x^2+x^3+1-3x+3x^2-x^3-6x^2-6x-6=0\)

\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x^2+3x^2-6x^2\right)+\left(3x-3x-6x\right)+\left(1+1-6\right)=0\)

\(\Leftrightarrow-6x-4=0\)

\(\Leftrightarrow x=-\frac{2}{3}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{2}{3}\right\}\)

3 tháng 3 2020

\(\left(1+x\right)^3+\left(1-x\right)^3-6x\left(x+1\right)=6\)

\(\Leftrightarrow1+2x+x^2+x+2x^2+x^3+1-2x+x^2-x+2x^2-x^3-6x-6x^2=6\)

\(\Leftrightarrow2-6x=6\)

\(\Leftrightarrow-6x=4\)

\(\Leftrightarrow x=-\frac{4}{6}=-\frac{2}{3}\)

b)

ĐKXĐ: \(x\ne-\dfrac{3}{2}\)

Để phân số \(B=\dfrac{4x+1}{2x+3}\) là số nguyên thì \(4x+1⋮2x+3\)

\(\Leftrightarrow4x+6-5⋮2x+3\)

mà \(4x+6⋮2x+3\)

nên \(-5⋮2x+3\)

\(\Leftrightarrow2x+3\inƯ\left(-5\right)\)

\(\Leftrightarrow2x+3\in\left\{1;-1;5;-5\right\}\)

\(\Leftrightarrow2x\in\left\{-2;-4;2;-8\right\}\)

hay \(x\in\left\{-1;-2;1;-4\right\}\)(thỏa ĐK)

Vậy: \(x\in\left\{-1;-2;1;-4\right\}\)