K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2016

Co sai de ko ban dang le phai la AB/AE=AD/AF=AC/GA

25 tháng 2 2021

Cái chỗ AB! và AD! nghĩa là ABvà BD2 đấy ạ 

AH
Akai Haruma
Giáo viên
13 tháng 10 2023

Lời giải:

a. Vì $ABCD$ là hình bình hành nên $AB=CD$

$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$
$\Rightarrow AF=CE(1)$

Mặt khác: $AB\parallel CD\Rightarrow AF\parallel CE(2)$

Từ $(1); (2)\Rightarrow AECF$ là hình bình hành.

b. 

B, E,F thẳng hàng??? Bạn xem lại đề.

13 tháng 6 2018

A B C D E F O I H K d

Qua B và D kẻ 2 đường thẳng song song với d cắt đường chéo AC của hbh ABCD tại H và K.

Gọi I là tâm đối xứng của hbh ABCD.

Áp dụng ĐL Thales ta có các tỉ số: \(\frac{AB}{AE}=\frac{AH}{AO};\frac{AD}{AF}=\frac{AK}{AO}\)

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AH+AK}{AO}=\frac{2AK+IH+IK}{AO}\)(*)

Dễ thấy \(\Delta\)BHI=\(\Delta\)DKI (g.c.g) => IH=IK, thay vào (*)

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{2AK+2IK}{AO}=\frac{2\left(AK+IK\right)}{AO}=\frac{2AI}{AO}\)

Mà AI=1/2AC => \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)(đpcm).

28 tháng 6 2018

Cảm ơn nhiều nhak ^_^