Event Lac Dit My Den Dong Tinh
Nhan nhip My den da den giam gia soc 95% 
co su gop mat cua kevin durant lebron james va ishowspeed va ronaldo
Chuc cac ban hoc tot cung My den
YEU CAU: DA DEN, CHIM TO (MCK + 6)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`P= (x-1)(x^2-x+1)` là một số nguyên tố

`=>` \(\left[{}\begin{matrix}x-1=1\\x^2-x+1=1\end{matrix}\right.\)

`<=>` \(\left[{}\begin{matrix}x=2\\x=0\\x=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
23 tháng 2 2022

Lời giải:
a. Để A là số nguyên tố thì 1 trong 2 thừa số $x-2, x+4$ có giá trị bằng 1 và số còn lại là số nguyên tố.

Mà $x-2< x+4$ nên $x-2=1$

$\Rightarrow x=3$

Thay vào $A$ thì $A=7$ là snt (thỏa mãn) 

b. Để $A<0\Leftrightarrow (x-2)(x+4)<0$

Điều này xảy ra khi $x-2,x+4$ trái dấu. Mà $x-2< x+4$ nên:

$x-2<0< x+4$

$\Rightarrow -4< x< 2$

$x$ nguyên nên $x=-3,-2,-1,0,1$

1 tháng 5 2019

Ta phải tìm số tự nhiên n để P = (n - 1)(n2- n + 1) là số nguyên tố .

P = (n - 1)(n2- n + 1)  là một tích , P là số nguyên tố thì P chỉ có 2 ước số là 1 và chính nó. Như vậy P = (n - 1)(n2- n + 1) là số nguyên tố thì: 

\(\orbr{\begin{cases}\hept{\begin{cases}n-1=1\\p=n^2-n+1\end{cases}}\\\hept{\begin{cases}n^2-n+1=1\\p=n-1\end{cases}}\end{cases}}\)- T rường hợp 1;           n - 1 = 1 , tức là n = 2 khi đó p = n2 - n + 1 = 3 thỏa mãn

     - Trường hơp 2 : n2 - n + 1 = 1 , ta tìm được n = 0 , n = 1  . Cả hai giá trị này đều cho ta số p = n - 1 không phải là số nguyên tố.

Trả lời n = 2 , p = 3

9 tháng 10 2017

Xét \(x=0\)

\(\Rightarrow M=1\)không phải số nguyên tố.

Xét \(x>0\) thì ta có:

\(M=x^{1999}+x^{1997}+1=\left(x^{1999}-x\right)+\left(x^{1997}-x^2\right)+x^2+x+1\)

\(=x\left(\left(x^3\right)^{666}-1\right)+\left(\left(x^3\right)^{665}-1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)A+\left(x^2+x+1\right)B+x^2+x+1\)

\(=\left(x^2+x+1\right)C\)

Vì M là số nguyên tố nên nó có 2 ước là 1 và chính nó. Ta lại thấy \(x^2+x+1>1\)

\(\Rightarrow x^{1999}+x^{1997}+1=x^2+x+1\)

\(\Leftrightarrow\left(x^{1999}-x^2\right)+\left(x^{1997}-x\right)=0\)

Ta có: \(\hept{\begin{cases}x^{1999}-x^2\ge0\\x^{1997}-x\ge0\end{cases}}\)

Dấu = xảy ra khi \(x=1\)

9 tháng 10 2017

Ta có : M=x1999+x1997+1=x(x1998−1)+x2(x1995−1)+x2+x+1=BS(x2+x+1)x1999+x1997+1=x(x1998−1)+x2(x1995−1)+x2+x+1=BS(x2+x+1)

Do đó , để M là số nguyên tố ⇔M=x2+x+1⇔M=x2+x+1

                                               ⇔x=1

27 tháng 10 2023

a) 2ˣ + 2ˣ⁺³ = 72

2ˣ.(1 + 2³) = 72

2ˣ.9 = 72

2ˣ = 72 : 9

2ˣ = 8

2ˣ = 2³

x = 3

b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)

Ta có:

x - 2 = x + 1 - 3

Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)

⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}

⇒ x ∈ {-4; -2; 0; 2}

Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên

c) P = |2x + 7| + 2/5

Ta có:

|2x + 7| ≥ 0 với mọi x ∈ R

|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R

Vậy GTNN của P là 2/5 khi x = -7/2

9 tháng 3 2018

GIÚP MÌNH VỚI Ạ ! MAI MÌNH CẦN GẤP RỒI!

10 tháng 3 2018

Bạn k mik đi xong mình làm

15 tháng 12 2023

1: \(D=\dfrac{1}{x+4}+\dfrac{x}{x-4}+\dfrac{24-x^2}{x^2-16}\)

\(=\dfrac{1}{x+4}+\dfrac{x}{x-4}+\dfrac{24-x^2}{\left(x+4\right)\left(x-4\right)}\)

\(=\dfrac{x-4+x\left(x+4\right)+24-x^2}{\left(x+4\right)\left(x-4\right)}\)

\(=\dfrac{-x^2+x+20+x^2+4x}{\left(x+4\right)\left(x-4\right)}=\dfrac{5x+20}{\left(x+4\right)\left(x-4\right)}\)

\(=\dfrac{5\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5}{x-4}\)

2: Khi x=10 thì \(D=\dfrac{5}{10-4}=\dfrac{5}{6}\)

3: \(M=\left(x-2\right)\cdot D=\dfrac{5\left(x-2\right)}{x-4}\)

Để M là số nguyên thì \(5\cdot\left(x-2\right)⋮x-4\)

=>\(5\left(x-4+2\right)⋮x-4\)

=>\(5\left(x-4\right)+10⋮x-4\)

=>\(10⋮x-4\)

=>\(x-4\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

=>\(x\in\left\{5;3;6;2;9;-1;14;-6\right\}\)

NV
29 tháng 1 2021

\(P=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2\)

\(P=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Rightarrow\) P luôn có ít nhất 2 ước số là \(x^2-x+1\) và \(x^2+x+1\)

Do \(x^2+x+1\ge x^2-x+1\) nên P là SNT khi và chỉ khi \(x^2-x+1=1\) đồng thời \(x^2+x+1\) là SNT

\(x^2-x+1=1\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

- Với \(x=0\Rightarrow x^2+x+1=1\) ko phải SNT (loại)

- Với \(x=1\Rightarrow x^2+x+1=3\) là SNT (t/m)

Vậy \(x=1\)