K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

góc ADB=góc DAC+góc ACD

=>góc ADB>góc ACD

=>góc ADB>góc ABD

=>AB>AD

Vì ΔABC cân tại A

nên góc ACB<90 độ

=>góc ACE>90 đô

=>AE>AC=AB

=>AD<AC<AE

góc ADB=góc DAC+góc ACD

=>góc ADB>góc ACD

=>góc ADB>góc ABD

=>AB>AD

Vì ΔABC cân tại A

nên góc ACB<90 độ

=>góc ACE>90 đô

=>AE>AC=AB

=>AD<AC<AE

15 tháng 2 2023

mn

giúp em nhanh vs ạ 

5 tháng 1 2020

BÀI NÀY MÌNH KO CHÈN ĐƯỢC HÌNH MONG BẠN THÔNG CẢM !!!

a. Xét tứ giác AEDF có:  AF // DE

                                          AE // DF

\(\Rightarrow\) AEDF là hình bình hành

\(\Rightarrow\)AD cắt EF tại trung điểm mỗi đường.

          Mà O là giao của AD và EF

\(\Rightarrow\) O là trung điểm AD

          Mà \(\Delta AHD\) vuông tại H

\(\Rightarrow\) HO = AO

      Do đó \(\Delta AOH\) cân tại O

https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc

a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)

Mặt khác dễ dàng chứng minh được EDFˆ=60o

Vì vậy tam giác DEF là tam giác đều

b)ΔEDK=ΔFDT(hai cạnh góc vuông)

nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D

c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o

AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)

AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)

Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều

d)Ta có AF=AC-FC=CM-FC=m-n.

DA*DP=DB*DC

=>DA/DC=DB/DP

=>ΔDAB đồng dạng với ΔDCP

=>góc BAD=góc PCD

=>ABPC nội tiếp

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(AB > AC \Rightarrow \widehat {ABC} < \widehat {ACB}\)( quan hệ giữa góc và cạnh đối diện trong tam giác ABC)

\(\begin{array}{l} \Rightarrow {180^0} - \widehat {ABD} < {180^0} - \widehat {ACE}\\ \Rightarrow \widehat {ABD} > \widehat {ACE}\end{array}\)

Vì BD= BA nên tam giác ABD cân tại B \( \Rightarrow \widehat {ABD} = {180^0} - 2\widehat {ADB}\)

Vì CE = CA nên tam giác ACE cân tại C \( \Rightarrow \widehat {ACE} = {180^0} - 2\widehat {AEC}\)

\(\begin{array}{*{20}{l}}{ \Rightarrow {{180}^0} - 2\widehat {ADB} > {{180}^0} - 2\widehat {AEC}}\\{ \Rightarrow \widehat {ADB} < \widehat {AEC}}\\{Hay{\mkern 1mu} \widehat {ADE} < \widehat {AED}}\end{array}\)

b) Xét tam giác ADE ta có : \(\widehat {ADB} < \widehat {AEC}\)

\( \Rightarrow AD > AE\)(Quan hệ giữa cạnh và góc đối diện trong tam giác). 

đừng xem chùa T_T

ủng hộ tôi bằng cách liike ik mờ

a, Vì △ABC cân tại A => AB = AC và ABC = ACB

Xét △ABD và △ACE

Có: AB = AC (cmt)

    ABD = ACE (cmt)

       BD = CE(gt)

=> △ABD = △ACE (c.g.c)

b, Xét △AHD vuông tại H và △AIE vuông tại I

Có: AD = AE (△ABD = △ACE)

    HAD = IAE (△ABD = △ACE)

=>  △AHD = △AIE (ch-gn)

=> HD = IE (2 cạnh tương ứng)

c, Xét △AHI có: AH = AI (△AHD = △AIE) => △AHI cân tại A => AHI = (180o - HAI) : 2       (1)

Vì △ABC cân tại A => ABC = (180o - BAC) : 2         (2)

Từ (1) và (2)  => AHI = ABC

Mà 2 góc này nằm ở vị trí đồng vị 

=> HI // BC (dhnb)

d, Gọi { O } = HD