K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

\(A=\frac{3n+4}{n-1}\)có giá trị nguyên

=>3n+4\(⋮n-1\)

=>3n+4=3.(n-1)+7

=>3.(n-1)+7\(⋮n-1\)

mà 3.(n-1) \(⋮n-1\)

=>7 chia hết cho n-1

=>\(n-1\inƯ\left(7\right)\)

mà Ư(7)={-7;-1;1;7}

=>\(n-1\in\){-7;-1;1;7}

ta có bảng sau;

n-1-7-117
n-6028
kết luậnthỏa mãnthỏa mãnthỏa mãnthỏa mãn

vậy...

26 tháng 4 2016

n = -6 ; 0 ; 2 ; 8

26 tháng 4 2016

ta có : A=\(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)

để A thuộc Z => 3+ \(\frac{7}{n-1}\)phải thuộc Z => \(\frac{7}{n-1}\in Z\)hay n-1 thuộc ước của 7

bạn tự làm nốt nhé

a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1

=>3(n-1)+7 chia hết cho n-1

=> n-1 thuộc Ư(7)={1;7;-1;-7}

Phần cuối bn tự làm nha

Còn câu b làm tương tự

8 tháng 3 2020

a) Từ đề bài, ta có:

\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)

\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)

\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)

b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)

\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)

\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)

22 tháng 7 2016

Để phân số trên thỏa mãn điều kiện thì:

3n+4 chia hết cho n-1

3n+4=3n-3+7

=3.(n-1)+7

Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1

n-1 thuộc +-1;+-7

Thử các trường hợp ra,ta có:

n thuộc:0;2;8;-6.

23 tháng 4 2017

xin lỗi em mới  chỉ học có lớp 5

em mong chị sẽ tự làm được

23 tháng 8 2021

cứu mik vớiiiiiiiiii

23 tháng 8 2021

a. ĐK : \(n\ne-4\) 

\(A=\frac{n+1}{n+4}=\frac{n+4-3}{n+4}=1-\frac{3}{n+4}\)

\(\Rightarrow n+4\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n + 41-13-3
n-3-5-1-7

b, ĐK : \(n\ne-1\)

 \(B=\frac{3n-1}{n+1}=\frac{3\left(n+1\right)-4}{n+1}=3-\frac{4}{n+1}\)

\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n + 11-12-24-4
n0-21-33-5

c,ĐK : \(n\ne\frac{1}{2}\) 

\(C=\frac{6n+5}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

2n - 11-12-24-48-8
n103/2(loại)-1/2(loại)5/2(loại)-3/2(loại)9/2(loại)-7/2(loại)

Để `3n+4/n-1∈ZZ`

3n+4⋮n−13n+4⋮n-1

⇒(3n−3)+7⋮n−1⇒(3n-3)+7⋮n-1

⇒3(n−1)+7⋮n−1⇒3(n-1)+7⋮n-1

Vì 3(n−1)⋮n−13(n-1)⋮n-1

⇒7⋮n−1⇒7⋮n-1

⇒n−1∈Ư(7)={±1;±7}⇒n-1∈Ư(7)={±1;±7}

⇒n∈{0;2;−6;8}⇒n∈{0;2;-6;8}

Vậy 3n+4n−1∈Z3n+4n-1∈ℤ khi n∈{0;2;−6;8}

Giải:

Để \(A=\dfrac{3n+4}{n-1}\) là số nguyên thì \(3n+4⋮n-1\) 

\(3n+4⋮n-1\) 

\(\Rightarrow3n-3+7⋮n-1\)

\(\Rightarrow7⋮n-1\) 

\(\Rightarrow n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) 

Ta có bảng giá trị:

n-1-7-117
n-6028

Vậy \(n\in\left\{-6;0;2;8\right\}\)

Chúc bạn học tốt!

23 tháng 9 2015

A=\(\frac{3n+9}{n-4}\)=\(\frac{3\left(n-4\right)+12+9}{n-4}=\frac{3\left(n-4\right)+21}{n-4}\)
Vì n-4 : hết cho n-4 => 3(n-4) chia hết cho n-4=> để A nguyên => 21 chia hết cho n-4
n-4 thuộc Ư(21)=> n-4 thuộc {-21;-7;-3;-1;1;3;7;21} =>n thuộc {-17;-3;1;3;5;7;25} 

21 tháng 3 2016

tsfđgggggggggg