Câu 2 : Tìm y
a. Y x 15 – y x 25 + y x 15 = 3780 - 255
b. 341 + 448 : y – 141 = 214
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)
\(\dfrac{x}{2}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
\(\Rightarrow x=5\cdot2=10\\ y=5\cdot5=25\)
\(b.\)
\(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y+10-3x-6}{5-3}=\dfrac{2-4}{2}=-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+6=-3\\y+10=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-15\end{matrix}\right.\)
\(c.\)
\(\dfrac{x}{4}=\dfrac{y}{5}\)
\(\Leftrightarrow\dfrac{2x}{8}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\cdot8\\y=5\cdot5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=35
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(10;25)
b) Ta có: \(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
nên \(\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
hay \(\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
mà y-3x=2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y-3x+10-6}{5-3}=\dfrac{2+4}{2}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{3x+6}{3}=3\\\dfrac{y+10}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6=9\\y+10=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Vậy: (x,y)=(1;5)
c) Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}\)
nên \(\dfrac{2x}{8}=\dfrac{y}{5}\)
mà 2x-y=15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(20;25)
y \(\times\) \(\dfrac{16}{64}\) + y \(\times\) \(\dfrac{25}{100}\) + y \(\times\) \(\dfrac{1}{4}\) + y \(\times\) \(\dfrac{15}{60}\) - \(\dfrac{13}{15}\) = \(\dfrac{17}{15}\)
y \(\times\) ( \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)) - \(\dfrac{13}{15}\) = \(\dfrac{17}{15}\)
y = \(\dfrac{17}{15}\) + \(\dfrac{13}{15}\)
y = \(\dfrac{30}{15}\)
y = 2
Cái này bằng rủ em chơi oẳn tù tì ,em ra lá còn anh ra hôn má em
a: =>x/15=-3/5
=>x=-9
b: =>36/y=4/7
=>y=36:4/7=63
c: =>xy=-12
=>(x,y) thuộc {(-1;12); (12;-1); (1;-12); (-12;1); (2;-6); (-6;2); (6;-2); (-2;6); (3;-4); (-4;3); (-3;4); (4;-3)}
d: =>xy=-18
=>(x,y) thuộc {(1;-18); (-18;1); (-1;18);(18;-1); (2;-9); (-9;2); (-2;9); (9;-2); (3;-6); (-6;3); (-3;6); (6;-3)}
\(\dfrac{x}{3}=\dfrac{y}{7}\Rightarrow\)\(\dfrac{x}{3}\times\dfrac{y}{7}=\dfrac{xy}{21}=\left(\dfrac{x}{3}\right)^2=\left(\dfrac{y}{7}\right)^2\)
\(\dfrac{xy}{21}=\dfrac{84}{21}=4\)
\(\Rightarrow\left(\dfrac{x}{3}\right)^2=4\Rightarrow\)\(\dfrac{x}{3}=2\Rightarrow x=6\)
\(\Rightarrow\left(\dfrac{y}{7}\right)^2=4\Rightarrow\)\(\dfrac{y}{7}=2\Rightarrow y=14\)
\(a)\)
\(y\times15-y\times25+y\times15=3780-255\)
\(y\times15-y\times25+y\times15=3525\)
\(y\times\left(15-25+15\right)=3525\)
\(y\times5=3525\)
\(y=3525:5\)
\(y=705\)
\(b)\)
\(341 + 448 : y - 141 = 214\)
\(341 + 448 : y = 214+141\)
\(341 + 448 : y = 355\)
\(448:y=355-341\)
\(448:y=14\)
\(y=448:14\)
\(y=32\)