Một người dự định đi xe máy từ A đến B trong thời gian nhất định. Khi còn cash B 60km người đó nhận ra rằng nếu cứ đi như vậy sẽ đến B chậm 20 phút nên tăng tốc thêm 10km/h, do đó đã đến B sớm hơn dự định 40 phút. Tính vận tốc dự định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quãng đường AB dài là:
60 x 2 = 120 (km)
Nếu người đó đi với vận tốc 40km/h thì cần thời gian là:
120: 40 = 3 giờ
Bài 1:
Gọi vận tốc ban đầu là $a$ km/h
Thời gian đi quãng đường $30$ km còn lại với vận tốc cũ: $t_1=\frac{30}{a}$ (giờ)
Thời gian đi quãng đường 30 km còn lại với vận tốc mới: $t_2=\frac{30}{a+5}$ (giờ)
Theo bài ra thì: $t_1-t_2=1$ giờ
$\Leftrightarrow \frac{30}{a}-\frac{30}{a+5}=1$
$\Rightarrow a=10$ (km/h)
Thời gi
Bài 2:
Gọi vận tốc riêng của cano là $a$ km/h và vận tốc dòng nước là $b$ km/h
ĐK: $a>b$
Theo bài ra ta có:
\(\left\{\begin{matrix} \frac{96}{a-b}+\frac{96}{a+b}=14\\ \frac{24}{b}=\frac{96}{a+b}+\frac{96-24}{a-b}\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} \frac{96}{a-b}+\frac{96}{a+b}=14\\ \frac{96}{a+b}+\frac{72}{a-b}=\frac{24}{b}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 192a=14(a-b)(a+b)\\ 24a=14b(a-b)\end{matrix}\right.\)(*)
\(\Rightarrow 8.14b(a-b)=14(a-b)(a+b)\)
\(\Leftrightarrow 8b=a+b\Leftrightarrow a=7b\). Thay vô 1 trong 2 pt trong $(*)$ thì:
$24.7b=14b.6b$
$168b=84b^2$
$b=2$ (km/h)
$a=7b=14$ (km/h)
40 phút = \(\dfrac{2}{3}h.\)
Gọi vận tốc xe dự định đi từ A đến B là x \(\left(km/h\right)\left(x>10\right).\)
thời gian theo dự định là y \(\left(h\right)\left(y>\dfrac{2}{3}\right).\)
\(\Rightarrow\) Quãng đường xe đi được là \(xy\left(km\right).\)
Nếu xe giảm vận tốc đi 10km/h thì xe đến B chậm hơn dự định 1 giờ, nên ta có phương trình:
\(\left(x-10\right)\left(y+1\right)=xy.\left(1\right)\)
Nếu xe tăng vận tốc thêm 10 km/h thì xe đến B sớm hơn dự định 40 phút, nên ta có phương trình:
\(\left(x+10\right)\left(y-\dfrac{2}{3}\right)=xy.\left(2\right)\)
Từ (1) và (2), ta có hpt:
\(\left\{{}\begin{matrix}\left(x-10\right)\left(y+1\right)=xy.\\\left(x+10\right)\left(y-\dfrac{2}{3}\right)=xy.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x-10y-10=xy.\\xy-\dfrac{2}{3}x+10y-\dfrac{20}{3}=xy.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-10y=10.\\-\dfrac{2}{3}x+10y=\dfrac{20}{3}.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=50.\\y=4.\end{matrix}\right.\left(TM\right)\)
Vậy vận tốc xe dự định đi từ A đến B là 50 km/h.
Gọi vận tốc và thời gian dự định đi từ A đến B lần lượt là v(km/h) và t(h)
(ĐK:v>10,t>\(\dfrac{2}{3}\))
Ta có quãng đường AB dài:vt(km)(1)
_Nếu xe giảm vận tốc đi 10 km thì:
+Vận tốc của xe là:v-10(km/h)
+Thời gian xe đi từ A đến B là:t+1(h)
\(\Rightarrow\)Quãng đường AB dài:(v-10)(t+1)=vt-10t+v-10(km)(2)
_Nếu xe tăng vận tốc thêm 10 km thì:
+Vận tốc của xe là:v+10(km/h)
+Thời gian xe đi từ A đến B là:t-\(\dfrac{2}{3}\)(h)
\(\Rightarrow\)Quãng đường AB dài:(v+10)(t-\(\dfrac{2}{3}\))=vt+10t-\(\dfrac{2}{3}\)v-\(\dfrac{20}{3}\)(km)(3)
Từ (1,2,3) ta có vt-10t+v-10=vt+10t-\(\dfrac{2}{3}\)v-\(\dfrac{20}{3}\)=vt
\(\Leftrightarrow\)\(\begin{cases} v-10t=10 \\ 10t-\dfrac{2}{3}v=\dfrac{20}{3} \end{cases}\)
\(\Leftrightarrow\)\(\begin{cases} v=50 \\ t=4 \end{cases}\)(t/m)
Vậy.........................................................................................
a) Thời gian xe đi đến B với vận tốc 60km/h:
\(t_1=t-\dfrac{1}{6}\)
Thời gian xe đi được đến B với vận tốc 40km/h:
\(t_2=t+\dfrac{1}{4}\)
Quãng đường mà xe đi được với vận tốc 60km/h:
\(s_1=v_1t_1=60\left(t-\dfrac{1}{6}\right)\)
Quãng đường mà xe đi được với vận tốc 40km/h
\(s_2=v_2t_2=40\left(t+\dfrac{1}{4}\right)\)
Vì cả hai quãng đường đều bằng nhau nên ta có phương trình:
\(s_1=s_2\)
\(\Leftrightarrow60\left(t-\dfrac{1}{6}\right)=40\left(t+\dfrac{1}{4}\right)\)
\(\Leftrightarrow60t-10=40t+10\)
\(\Leftrightarrow60t-40t=10+10\)
\(\Leftrightarrow20t=20\)
\(\Leftrightarrow t=\dfrac{20}{20}=1\left(h\right)\)
Vậy thời gian dự định đi là \(1h\)
b) Độ dài của quãng đường AC:
\(s_3=v_1.\dfrac{t}{2}=60.\dfrac{1}{2}\)
Độ dài của quãng đường CB:
\(s_4=v_2.\dfrac{t}{2}=40.\dfrac{1}{2}\)
Vì AB=CB+AC nên ta có phương trình:
\(s=s_3+s_4\)
\(\Leftrightarrow s=60.\dfrac{1}{2}+40.\dfrac{1}{2}\)
\(\Leftrightarrow s=30+20\)
\(\Leftrightarrow s=50km\)
Vậy quãng đường AB dài 50km
Gọi độ dài quãng đường AB là x
Theo đề, ta có: \(\dfrac{x}{40}-1=\dfrac{\dfrac{x}{2}-60}{40}+\dfrac{\dfrac{x}{2}+60}{50}\)
=>5x-200=5(x/2-60)+4(x/2+60)
=>5x-200=5/2x-300+2x+240
=>0,5x=-60+200=140
=>x=280
đây mà gọi là toán lớp 9