Cho tam giác ABC vuông tại A (AC > AB)đường cao AH ( H € BC ). Trên tia đối của tia bc lấy điểm K sao cho HK = HA qua K kẻ đường thẳng song song với AC cắt đường thẳng AC tại P a) Cm ∆ ABC ~ ∆ KPC b) Gọi Q là trung điểm của BP. Cm QA=QK và QH vuông góc AK c)Cm góc AKC = góc BPC d)Cm BP.HQ = BH.PC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2 tâm giác vuông có 1 góc nhọn bằng nhau
b) QK=QA suy ra dpcm
Xét tứ giác ABDC có
AB//DC
AC//BD
Do đó: ABDC là hình bình hành
=>AD cắt BC tại trung điểm của mỗi đường
=>K là trung điểm chung của AD và BC
Xét ΔAED có
H,K lần lượt là trung điểm của AE,AD
=>HK là đường trung bình của ΔAED
=>HK//ED
Ta có: HK//ED
HK\(\perp\)AE
Do đó: ED\(\perp\)AE
=>ΔAED vuông tại E
Ta có: ΔEAD vuông tại E
mà EK là đường trung tuyến
nên KE=KD
=>ΔKED cân tại K
a) Xét ∆ADC có :
CH là trung tuyến AD ( AH = HD )
CH là đường cao
=> ∆ADC cân tại C
=> CH là phân giác DCA
Hay CB là phân giác DCA
b) Xét ∆ vuông BHA và ∆ vuông DHE ta có :
BHA = DHE
HA = HD
=> ∆BHA = ∆DHE (cgv-gn)
=> BAH = HDE
Mà 2 góc này ở vị trí so le trong
=> BA//DE
c) Chứng minh DKA = 90°
=> HK = HD = HA ( tính chất )
=> HK = \(\frac{1}{2}\:AD\)
Giúp mình đi mai mik nộp r