K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2023

Q=3x+9y+15z+x+x4​+y+y9​+z+z25​

\ge 108+2.2+2.3+2.5=128≥108+2.2+2.3+2.5=128

Dấu "=" xảy ra khi x+3y+5z=36, x=\dfrac{4}x, y=\dfrac{9}y, z=\dfrac{25}z\Rightarrow x=2,y=3,z=5x+3y+5z=36,x=x4​,y=y9​,z=z25​⇒x=2,y=3,z=5

bạn tham khảo nhé

31 tháng 7 2019

Ta có \(A=2x+3y+5z+\frac{1}{x}+\frac{8}{y}+\frac{16}{z}\)

           \(=\left(x+y+z\right)+\left(x+\frac{1}{x}\right)+\left(2y+\frac{8}{y}\right)+\left(4z+\frac{16}{z}\right)\)

           \(\ge5+2+2\sqrt{2.8}+2\sqrt{4.16}=31\)

MinA=31 khi a=1; b=c=2

Gợi ý nhá

Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.

b)  Bạn chỉ cần cho tử và mẫu mũ 3 lên.  theé là dễ r

27 tháng 10 2018

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

tự tính tiếp =)

18 tháng 5 2016

1.

\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}=>\frac{y}{15}=\frac{z}{21}\)

=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

=> x=2x10=20

y=2x15=30

z=2x21=42

18 tháng 5 2016

2.

\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=-\frac{9}{2}\)

=> x=\(-\frac{9}{2}x1=-\frac{9}{2}\)

y=\(-\frac{9}{2}x2=-9\)

z=\(-\frac{9}{2}x3=-\frac{27}{2}\)

16 tháng 7 2019

2x=3y=>x/3=y/2=>x^2/ 9=y^2/ 4

áp dụng t/c DTSBN:

x^2-y^2/ 9-4=25/5=5

=> x^2=45 =>x=+_ căn 45

y^2=20=> y=+_ căn 20

12 tháng 8 2017

Ta có:

\(\left(4x+9y+16z\right)\left(\frac{1}{x}+\frac{25}{y}+\frac{64}{z}\right)\ge\left(\sqrt{\frac{4x}{x}}+\sqrt{\frac{9y.25}{y}}+\sqrt{\frac{16z.64}{z}}\right)^2\)

\(\Leftrightarrow49\left(\frac{1}{x}+\frac{25}{y}+\frac{64}{z}\right)\ge\left(2+15+32\right)^2\)

\(\Leftrightarrow\frac{1}{x}+\frac{25}{y}+\frac{64}{z}\ge49\)

Dấu = xảy ra tại \(x=\frac{1}{2};y=\frac{5}{3};z=2\)

15 tháng 12 2021

1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)

2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)

3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)

Áp dụng t/c dtsbn:

\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)

9 tháng 6 2018

a,Ta có : \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)

\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)

Suy ra :\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x-15k;y=10k;z=8k\)

Ta có : \(4(15k)-3(10k)+5(8k)=7\)

\(\Rightarrow60k-30k+40k=7\)

\(\Rightarrow70k=7\). Suy ra \(k=\frac{1}{10}\)

Ta có : \(x=\frac{1}{10}\cdot15=\frac{3}{2}\)

\(y=\frac{1}{10}\cdot10=1\)

Mình chỉ giải có chừng này thôi

Câu b mk làm sau

\(xy+2x-y=7\)

\(xy+2x=7+y\)

\(x\left(y+2\right)=7+y\)

\(x=\frac{7+y}{y+2}\)