Cho tam giác ABC cân tại A, H là trung điểm của AB. Vẽ trung tuyến AD. Gọi E là điểm đối xứng với D qua H
a/. Chứng minh AEBD là hình chữ nhật.
b/. Tứ giác ACDE là hình bình hành.
c/. Chứng minh diện tích tứ giác AEBD bằng diện tích tam giác ABC.
d/. Tìm điều kiện của tam giác ABC để AEBD là hình vuông.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Ta có AM=MB và EM=MD ( đối xứng ) =>AEBD là hình bình hành
mà góc D = 90 (độ) => AEBD là hình chữ nhật
b) từ câu a =>AE//DC ; mà DC=DB (AD là đường cao của tam giác cân ABC =>là AD cũng đường trung tuyến)
=>ACDE là hình bình hành
c) để tứ giác AEBD là hình vuông thì:
như câu a thì AEBD là hình chữ nhật =>điều hiện là:AD=BD mà AD=BD =>tam giác ABC phải là tam giác vuông cân
d) S tam giác ABC= AD.BD/2 = AD.BD 1
S hình chữ nhật ABDE= AD.BD 2
Từ 1 và 2 =>S tam giác ABC = S hình chữ nhật ABDE (đpcm)
a) Xét tứ giác ABEC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AE(A và E đối xứng nhau qua M)
Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABEC có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)
nên ABEC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Vì D đối xứng với M qua AB(gt)
nên AB là đường trung trực của DM
⇔AB vuông góc với DM tại trung điểm của DM
mà AB cắt DM tại H(gt)
nên H là trung điểm của DM và MH⊥AB tại H
Ta có: MH⊥AB(cmt)
AC⊥AB(ΔABC vuông tại A)
Do đó: MH//AC(Định lí 1 từ vuông góc tới song song)
hay MD//AC
Ta có: H là trung điểm của MD(cmt)
nên \(MH=\dfrac{1}{2}\cdot MD\)(1)
Xét ΔABC có
M là trung điểm của BC(gt)
MH//AC(cmt)
Do đó: H là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
H là trung điểm của AB(cmt)
Do đó: MH là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒\(MH=\dfrac{1}{2}\cdot AC\)(Định lí 2 đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra AC=MD
Xét tứ giác ACMD có
AC//MD(cmt)
AC=MD(cmt)
Do đó: ACMD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
a, tứ giác AMCD có: ID=IM;IA=IC
⇒tứ giác AMCD là hình bình hành
Lại có:góc AMC=90 độ (ΔABC cân tại A có AM là đường trung tuyến)
⇒tứ giác AMCD là hình chữ nhật
b, Ta có AD//CM và AD=CM (tứ giác ADCM là hình chữ nhật)
mà B∈CM và BM=CM
⇒AD//BM và AD=BM
⇒tứ giác ABMD là hình bình hành
a. xét tam giác ABC, có:
M là trung điểm AB (giả thuyết)
D là trung điểm BC (AD là đường trung tuyến tam giác ABC)
=> MD là đường trung bình tam giác ABC
=> MD // AC
mà E thuộc MD (E là điểm đối xứng của D qua M)
=> DE // AC (1)
ta có: MD là đường trung bình tam giác ABC (chứng minh trên)
=> MD = \(\frac{1}{2}\)AC
mà M là trung điểm cua ED (E là điểm đối xứng của D qua M)
=> ED = AC (2)
từ (1),(2):
=> AEDC là hình bình hành (tứ giác có 1 cặp cạnh đối vừa song song, vừa bằng nhau) (chỗ này đề sai nên mình sửa lại là AEDC)
b. xét tứ giác AEBD, có:
M là trung điểm ED (E là điểm đối xúng của D qua M)
M là trung điểm AB (giả thuyết)
ED cắt AB tại M
=> AEBD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
xét tam giác ABC vuông A, có:
AD là đường trung tuyến (giả thuyết)
=> AD = BD
mà AEBD là hình bình hành (chứng minh trên)
=> AEBD là hình thoi (hình bình hành có 2 cặp cạnh kề bằng nhau)
C. ta có: D là trung điểm của BC (AD là đường trung tuyến)
=> BD = \(\frac{1}{2}\)BC
=> BD= \(\frac{5}{2}\)
=> BD= 2.5 cm
ta có: AEBD là hình thoi (chứng minh trên)
=> P(chu vi)AEBD = 2.5x4
= 10 cm
a: Xét ΔABC có
D là tđiểm của AB
E là tđiểm của AC
Do đó: DE là đường trung bình
=>DE//FC và DE=FC
hay DECF là hình bình hành
Bạn tự vẽ hình nhé.
a.
Xét tứ giác AEBD có:
AH = HB (H là trung điểm của AB)
HE = HD (vì E và D đối xứng với nhau qua H)
=> AEBD là hình bình hành.
Lại có: \(\widehat{ADB}=90^o\) (AD là đường trung tuyến của tam giác cân ABC)
Từ trên suy ra: AEBD là hình chữ nhật.
b.
Vì AEBD là hình chữ nhật nên ta có:
- AE // BD và AE = BD (1)
mà: BC // AE và BD = DC (2)
Từ (1), (2) suy ra: ACDE là hình bình hành.
c.
có: \(S_{AEBD}=AD.DB=\dfrac{1}{2}.AD.BC=S_{ABC}\)
d.
Để AEBD là hình vuông thì AD = BD
=> \(AD=\dfrac{1}{2}BC\) => Tg ABC vuông.
Mà AB = AC
=> Điều kiện của tam giác ABC là vuông cân tại A để AEBD là hình vuông.