Tính:
\(A=\frac{7}{10}+\frac{7}{10^2}+\frac{7}{10^3}+...+\frac{7}{10^{2017}}.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(A=\frac{7}{10}+\frac{7}{10^2}+\frac{7}{10^3}+\frac{7}{10^4}\)
\(A=7.\left(\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+\frac{1}{10^4}\right)\)
Lại đặt \(B=\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+\frac{1}{10^4}\)
\(10B=1+\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}\)
\(10B-B=\left(1+\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}\right)-\left(\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+\frac{1}{10^4}\right)\)
\(9B=1-\frac{1}{10^4}\)
\(\Rightarrow B=\frac{1-\frac{1}{10^4}}{9}\)
\(\Rightarrow A=7.\frac{1-\frac{1}{10^4}}{9}=\frac{7.\left(1-\frac{1}{10^4}\right)}{9}\)
1/10 A =7/10^2+7/10^3+..............+7/10^2020
9/10*A=(7/10+7/10^2+......................+7/10^2019)-(7/10^2+7/10^3+........+7/10^2020)
=7/10-7/10^2020
A=10/9 .(7/10-7/10^2020)
\(A=\frac{7}{10}+\frac{7}{10^2}+...+\frac{7}{10^{100}}\)
\(10A=7+\frac{7}{10}+...+\frac{7}{10^{99}}\)
\(\Rightarrow10A-A=9A=7-\frac{7}{10^{100}}\)
\(\frac{\left(13\frac{1}{4}-2\frac{5}{7}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}=\frac{\left(\frac{53}{4}-\frac{19}{7}-\frac{65}{6}\right).\frac{5751}{25}+\frac{187}{4}}{\left(\frac{13}{10}+\frac{10}{3}\right):\left(\frac{37}{3}-\frac{100}{7}\right)}\)
\(=\frac{\left(\frac{1113}{84}-\frac{228}{84}-\frac{910}{84}\right).\frac{5751}{25}+\frac{187}{4}}{\left(\frac{39}{30}+\frac{100}{30}\right):\left(\frac{259}{21}-\frac{300}{21}\right)}\)
\(=\frac{\frac{-25}{84}.\frac{5751}{25}+\frac{187}{4}}{\frac{139}{30}:\frac{-41}{21}}\)
\(=\frac{\frac{-1917}{28}+\frac{1309}{28}}{\frac{139}{30}.\frac{-21}{41}}\)
\(=\frac{\frac{-608}{28}}{\frac{-973}{410}}=\frac{-152}{7}.\frac{410}{-973}=\frac{62320}{6811}\)
a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)
ta có :
\(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)
\(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)
\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)
Vậy \(A< 3\)
a. Ta có :
\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)
\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)
\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)
Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)
Vậy \(A< 3\)