cho tam giác ABC vuông tại A biết B=40 độ,tính C
2)cho tam giác ABC vuông tại B ,biết góc A=góc 2C,tính góc A,C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
góc C=90-40=50 độ
Xét ΔABC vuông tại A có
sin C=AB/BC
=>3/BC=sin50
=>\(BC\simeq3:sin50=3,92\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq2,52\left(cm\right)\)
góc B=90-40=50 độ
Xét ΔABC vuông tại A có
tan C=AB/AC
=>12/AC=tan 40
=>\(AC\simeq14,3\left(cm\right)\)
=>\(BC=\sqrt{14.3^2+12^2}\simeq18,67\left(cm\right)\)
Xét ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/12=CD/18,67
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{12}=\dfrac{CD}{18.67}=\dfrac{AD+CD}{12+18.67}=\dfrac{14.3}{30.67}\simeq0,47\)
=>\(AD\simeq5,64\left(cm\right);CD\simeq8,76\left(cm\right)\)
Ta có :
ABC - C = 40 o
=> ABC = 40 o + C
Xét tam giác ABC vuông tại A ta có :
ABC + C = 90 o ( Định lý )
=> 40 o + C + C = 90 o
=> 2 C = 50 o
=> C = 25 o
=> ABC = 90 o - 25 o = 65 o
Vậy ABC = 65 o và C = 25 o
ABC + A + C =180
ABC + C = 90
-
ABC - C = 40
2C = 50
C =25
ABC = 65
+)ΔABC vuông tại A \(\Rightarrow\widehat{A}=90^o\)
+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(=>90^o+40^o+\widehat{C}=180^o\)
\(=>\widehat{C}=180^o-90^o-40^o=50^o\)
Vậy \(\widehat{C}=50^o\)
------------------------------------------
+)Tam giác ABC vuông tại B \(\Rightarrow\widehat{B}=90^o\)
+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}+\widehat{C}=2.\widehat{C}+\widehat{C}=3.\widehat{C}\)
+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+90^o+\widehat{C}=180^o\)
\(=>\widehat{A}+\widehat{C}=180^o-90^o\)
\(=>3.\widehat{C}=90^o\)
\(=>\widehat{C}=\dfrac{90^o}{3}=30^o\)
+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}=2.30^o=60^o\)
Vậy: \(\widehat{A}=60^o\) ; \(\widehat{C}=30^o\)
1: góc C=90-40=50 độ
2: góc A=2/3*90=60 độ
góc C=90-60=30 độ