1/1.2+1/2.3+1/3.4+...+1/x.(x+1)=19/20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{19}{20}\)
\(\Rightarrow\) A = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)
\(\Rightarrow\) A = 1 - \(\dfrac{1}{x+1}\)
\(\Rightarrow\) 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{19}{20}\)
\(\Rightarrow1-\dfrac{19}{20}=\dfrac{1}{x+1}\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{20}\)
\(\Rightarrow\) x + 1 = 20\(\Rightarrow\) x=19
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{20}{21}\)
\(1-\dfrac{1}{x+1}\) \(=\dfrac{20}{21}\)
\(\dfrac{1}{x+1}\) \(=\) \(\dfrac{1}{21}\)
\(=>x+1=21\)
\(x=21-1\)
\(x=20\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{x.\left(x+1\right)}=\dfrac{20}{21}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{20}{21}\)
\(1-\dfrac{1}{x+1}=\dfrac{20}{21}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{20}{21}\)
\(\Leftrightarrow x+1=21\)
\(x=21-1\)
\(x=20\)
Vậy \(x=20\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)=2023x\)
\(\Rightarrow2022x+\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}+\dfrac{1}{2022}-\dfrac{1}{2023}\right)=2023x\)\(\Rightarrow2022x-2023x=-\left(1-\dfrac{1}{2023}\right)\)
\(\Rightarrow-x=-\dfrac{2022}{2023}\Leftrightarrow x=\dfrac{2022}{2023}\)
(x + 1/1.2) + (x + 1/2.3) + (x + 1/3.4) + ... + (x + 1/2022.2023) = 2023x
x + x + x + ... + x + 1/1.2 + 1/2.3 + ... + 1/2022.2023 = 2023x
2022x + 1 - 1/2 + 1/2 - 1/3 + ... + 1/2022 - 2023 = 2023x
2023x - 2022x = 1 - 1/2023
x = 2022/2023
Bài 2:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2016}{2017}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)
\(\Leftrightarrow x+1=2017\Leftrightarrow x=2016\)
Vậy \(x=2016\)
Ta có: 1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2/3
=> 1-1/2+1/2-1/3+1/3-1/4+...+1/x-1/x+1=2/3
=>1-1/x+1=2/3
=>1/x+1=1/3
=>3=x+1
=>x=2
Ta có\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{3}\)
=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{3}\)
=>\(1-\frac{1}{x+1}=\frac{2}{3}\)
=>\(\frac{1}{x+1}=1-\frac{2}{3}\)
=>\(\frac{1}{x+1}=\frac{1}{3}\)
=>\(x+1=3\)
=>\(x=2\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=201\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=201\)
\(1-\frac{1}{x+1}=201\)
\(\frac{1}{x+1}=1-201\)
\(\frac{1}{x+1}=-200\)
\(\Rightarrow x+1=-\frac{1}{200}\)
\(x=-\frac{1}{200}-1\)
\(x=-\frac{201}{200}\)
Vậy \(x=-\frac{201}{200}\)
1/1.2 +1/2.3 +...+ 1/x(x+1) = 2015/2016
<=> 1-1/2 + 1/2 - 1/3 + ... + 1/x - 1/x+1 = 2015/2016
<=> 1 - 1/x+1 = 2015/2016
<=> 1/x+1 = 1/2016
<=> x + 1 = 2016
<=> x = 2015
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2015}{2016}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{2015}{2016}=\frac{1}{2016}\)
\(\Leftrightarrow x+1=2016\Rightarrow x=2015\)
1- 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +......+ 1/x - 1/x+1 = 99/100
1- 1/x+1= 99/100
1/x+1= 1- 99/100
1/x+1=1/100
=> x+1 = 100
x= 100-1
x=99
\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\); \(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\);.....; \(\frac{1}{x.\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=1-\frac{1}{x+1}=\frac{x}{x+1}\)
=> \(\frac{x}{x+1}=\frac{19}{20}\)=> 20x=19x+19 => x=19
ĐS: x=19
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x\times\left(x+1\right)}=\frac{19}{20}\)\(\frac{19}{20}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{20}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{19}{20}\)
\(\Rightarrow\frac{x}{x+1}=\frac{19}{20}\)
\(\Rightarrow20x=19x+19\)\(\Rightarrow x=19\)
Vậy \(x=19\)