Cho tam giác ABC có AB=AC. Trên tia đối của tia BC lấy điểm M và trên tia đối của CB lấy điểm N sao cho BM=CN.
a) Chứng minh AM=AN
b) Kẻ BE vuông góc với AM, CF vuông góc với AN (E thuộc AM, F thuốc AN). Chứng minh tam giác BME= tam giác CNF
c) EB và FC kéo dài cắt nhau tại O. Chứng minh AO là phân giác của góc MAN.
d) Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, chúng cắt nhau tại H. Chứng minh 3 điểm A,D,O thẳng hàng
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔABM=ΔACN
=>AM=AN
b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có
BM=CN
góc M=góc N
Do đó: ΔBME=ΔCNF
c: góc OBC=góc EBM
góc OCB=góc FCN
mà góc EBM=góc FCN
nên góc OBC=góc OCB
=>OB=OC
mà AB=AC
nên AO là trung trực của BC
=>AO vuông góc với BC
ΔAMN cân tại A
mà AO là đường cao
nên AO là phân giác của góc MAN