Cho tam giác ABC có AB = AC. Lấy M là trung điểm BC.
a) Chứng minh tam giác ABM = tam giác ACM và tia AM là tia phân giác của góc BAC
b) Lấy điểm D thuộc tia đối của tia BC và điểm E thuộc tia đối của tia CB sao cho BD = CE. Kẻ BH vuông góc với AD tại H, kẻ CI vuông góc với AE tại I. Chứng minh: tam giác ABD = tam giác ACE; DH = EI.
c) Trong trường hợp BA = BD và góc BAC = 90 , tính góc BDA
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đo: ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
b: Xét ΔABD và ΔACE co
AB=AC
góc ABD=góc ACE
BD=CE
Do đo: ΔABD=ΔACE
Xét ΔBHD vuông tại H và ΔCIE vuông tại I có
BD=CE
góc D=góc E
Do đo: ΔBHD=ΔCIE
=>DH=EI