Cho tam giác ABC vuông tại A, đường cao AH. Đường tròn (I) đường kính BH cắt AB tại M. Đường tròn (K) đường kính HC cắt AC tại N. Gọi O là giao điểm của AH và MN.Tìm điều kiện tam giác ABC để MN coa độ dài lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác MBH nội tiếp đường tròn tâm I đường kính BH
=> Tam giác MHB vuông tại M => MH vg AB => AMH = 90 độ
Tam giác HNC nội tiếp đường tròn tâm O đk HC => Tam giác NHC vuông tại N
=> ANH = 90 độ
TG NAMH có ANH = HMA = MAN = 90 độ
=> NAMH là HCN . Gọi MN giao AH tại O => OM = OH ; ON = OH ( tính chất HCN)
Tam giác BMH vuông tại M có MI là trung tuyến => MI = IH = 1/2 BH => Tam giác IMH cân tại I
=> IMH = IHM (1)
Tam giác OMH có OM = OH => tam giác OMH cân tại O => OMH = OHM (2)
Từ (1) và (2) => IMH + OMH = IHM + OHM => OMI = IHO = 90 độ
=> MN vg IM
=> MN là tiếp tuyến đường tròn tâm I (*)
CM tương tự MN vg NK => MN là tiếp tuyến đường tròn tâm K (**)
Từ (*) và(**) => MN là tiếp tuyến chung của đường tròn tâm I và K
a:
Xét đường tròn đường kính HB có
ΔHMB nội tiếp đường tròn
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét đường tròn đường kính HC có
ΔHNC nội tiếp đường tròn
HC là đường kính
Do đó: ΔHNC vuông tại N
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
nên AMHN là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\)(cm)
=>AH=6*8/10=4,8(cm)
=>MN=4,8(cm)
c: góc IMN=góc IMH+góc NMH
=góc IHM+góc NAH
=góc HAC+góc HCA=90 độ
=>MN là tiếp tuyến của (I)
góc KNM=góc KNH+góc MNH
=góc KHN+góc MAH
=góc BAH+góc HBA=90 độ
=>MN là tiếp tuyến của (K)
a: góc AHB=90 độ
=>H nằm trên đường tròn đường kính AB
góc AHC=90 độ
=>H nằm trên đường tròn đường kính AC
b: góc IHA=góc IBM
góc KHA=góc KCN
góc AMB=góc ANC-90 độ
=>góc IHK=góc IBM+góc KCN
=góc MBA+góc NCA
=180 độ-góc MAB-góc NAC
=90 độ
=>góc IHK+góc IAK=180 độ
=>A,H,I,K nội tiếp
c: góc HAK=góc HIK
góc IAH+góc HAK=90 độ
góc IAH=góc BMI
=>góc HIK=góc AMI
=>IK//MN
tính : \(BC=5.AH=\dfrac{12}{5}\)
+ gọi K là tâm của đường tròn ngoại tiếp ΔBMN .Khi đó , KI là đường trung trực của đoạn MN
Do 2 ΔAID và AOH đồng dạng nên => góc ADI = góc AOH = 90\(^o\)
=> OA ⊥ MN
do vậy : KI//OA
+ do tứ giác BMNC nội tiếp nên OK⊥BC . Do đó AH// KO
+ dẫn đến tứ giác AOKI là hình bình hành.
Bán kính:
\(R=KB=\sqrt{KO^2+OB^2}=\sqrt{AI^2+\dfrac{1}{4}BC^2}=\sqrt{\dfrac{1}{4}AH^2+\dfrac{1}{4}BC^2=\sqrt{\dfrac{769}{10}}}\)