Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔAHM nội tiếp
AH là đường kính
=>ΔAMH vuông tại M
Xét (O) có
ΔANH nội tiếp
AH là đường kính
=>ΔANH vuông tại N
ΔHAB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔHCA vuông tại H có HN là đường cao
nên AN*AC=AH^2
b: Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
=>góc ANM=góc AHM=góc ABC
=>góc MBC+góc MNC=180 độ
=>NMBC là tứ giác nội tiếp
a: Xét (AH/2) có
ΔAMH nội tiếp
AH là đường kính
Do đó: ΔAMH vuông tại M
Xét (HA/2)có
ΔAHN nội tiếp
AH là đường kính
Do đó;ΔAHN vuông tại N
Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
b: AM*AB=AH^2
AN*AC=AH^2
Do dó: AM*AB=AN*AC
c: góc NME
=góc NMH+góc EMH
=góc HAC+góc HCA=90 độ
=>NM là tiếp tuyến của (E)
Tam giác MBH nội tiếp đường tròn tâm I đường kính BH
=> Tam giác MHB vuông tại M => MH vg AB => AMH = 90 độ
Tam giác HNC nội tiếp đường tròn tâm O đk HC => Tam giác NHC vuông tại N
=> ANH = 90 độ
TG NAMH có ANH = HMA = MAN = 90 độ
=> NAMH là HCN . Gọi MN giao AH tại O => OM = OH ; ON = OH ( tính chất HCN)
Tam giác BMH vuông tại M có MI là trung tuyến => MI = IH = 1/2 BH => Tam giác IMH cân tại I
=> IMH = IHM (1)
Tam giác OMH có OM = OH => tam giác OMH cân tại O => OMH = OHM (2)
Từ (1) và (2) => IMH + OMH = IHM + OHM => OMI = IHO = 90 độ
=> MN vg IM
=> MN là tiếp tuyến đường tròn tâm I (*)
CM tương tự MN vg NK => MN là tiếp tuyến đường tròn tâm K (**)
Từ (*) và(**) => MN là tiếp tuyến chung của đường tròn tâm I và K
a
Đường tròn , đường kính có
.
vuông tại có
.
Chứng minh tương tự .
\(\Rightarrow\) .
B
Theo câu a ta có
.
Tam giác và tam giác có chung và .
(c.g.c).
\(\widehat{ACB}\)
c.
Tam giác vuông tại có là trung điểm của
.
cân tại
Theo câu b ta có \(\widehat{AMN}\)
Mà \(\widehat{BAD}\)
\(\widehat{BAD}\)
.
Ta chứng minh vuông tại có
.
Mà
\(\Rightarrow\) là tứ giác nội tiếp.
2 )
\(\frac{a+b}{2}.\frac{a^2+b^2}{2}\le\frac{a^3+b^3}{2}\)
\(\Leftrightarrow\frac{a^3+b^3+a^2b+ab^2}{4}\le\frac{a^3+b^3}{2}\)
\(\Leftrightarrow a^3+b^3+a^2b+ab^2\le2a^3+2b^3\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng )
\(\hept{\begin{cases}\left(a-b\right)^2\ge0\\a>0;b>0\Rightarrow a+b>0\end{cases}}\)