Thu gọn tổng sau:
S = 1.22+2.23+3.24+...+99.2100
Giúp em với mọi ngừiiiiii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(M=133.\left(\frac{1}{1.1996}+\frac{1}{2.1997}+..........+\frac{1}{21.2016}\right)\)
\(\Rightarrow M.15=133.15.\left(\frac{1}{1.1996}+\frac{1}{2.1997}+.......+\frac{1}{21.2016}\right)\)
\(\Rightarrow M.15=\frac{1995}{1.1996}+\frac{1995}{2.1997}+........+\frac{1995}{21.2016}\)
\(\Rightarrow M.15=1-\frac{1}{1996}+\frac{1}{2}-\frac{1}{1997}+...........+\frac{1}{21}-\frac{1}{2016}\)
\(\Rightarrow M.15=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{21}\right)-\left(\frac{1}{1996}+\frac{1}{1997}+.....+\frac{1}{2016}\right)\)
Ta có:
\(N.15=\frac{7}{5}.15\left(\frac{1}{1.22}+\frac{1}{2.23}+..........+\frac{1}{1995.2016}\right)\)
\(\Rightarrow N.15=\frac{21}{1.22}+\frac{21}{2.23}+..........+\frac{21}{1995.2016}\)
\(\Rightarrow N.15=1-\frac{1}{22}+\frac{1}{2}-\frac{1}{23}+.............+\frac{1}{1995}-\frac{1}{2016}\)
\(\Rightarrow N.15=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{1995}\right)-\left(\frac{1}{22}+\frac{1}{23}+.......+\frac{1}{2016}\right)\)
\(\Rightarrow N.15=\left(1+\frac{1}{2}+.....+\frac{1}{21}\right)+\left(\frac{1}{22}+\frac{1}{23}+....+\frac{1}{1995}-\frac{1}{22}-...-\frac{1}{2016}\right)\)
\(\Rightarrow N.15=\left(1+\frac{1}{2}+....\frac{1}{21}\right)-\left(\frac{1}{1996}+\frac{1}{1997}+....\frac{1}{2016}\right)\)
\(\Rightarrow N.15=M.15\Rightarrow M=N\)
soyeon_Tiểubàng giải
Võ Đông Anh Tuấn
Silver bullet
Hoàng Lê Bảo Ngọc
Trần Việt Linh
Lê Nguyên Hạo
mấy bn giúp mk vs
program TinhTong;
uses crt;
var
N, i, j, tich: integer;
S: real;
begin
clrscr;
write('Nhap so nguyen N: ');
readln(N);
S := 0;
tich := 1;
for i := 1 to N do
begin
tich := tich * i;
S := S + tich;
end;
writeln('Tong S = ', S:0:2);
readln;
end.
program TinhTong;
var
i, S: integer;
begin
S := 0;
for i := 1 to 10 do
S := S + i;
writeln('Tong cac so tu 1 den 10 la: ', S);
readln;
end.
\(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}\)
\(=\frac{\left(3^2\right)^{14}.\left(5^2\right)^5.\left(2^3\right)^7}{\left(2.3^2\right)^{12}.\left(5^4\right)^3.\left(2^3.3\right)^3}\)
\(=\frac{3^{28}.5^{10}.2^{21}}{2^{12}.3^{24}.5^{12}.2^9.3}\)
\(=\frac{3^{28}.5^{10}.2^{21}}{2^{21}.3^{25}.5^{12}}\)
\(=\frac{3^3.1.1}{1.1.5^2}\)
\(=\frac{27}{25}\)
S=4078378
Cách làm;
S=2^2+3^2=4^2+......+2019^2
S=(2+3+4+.....+2019)^2
Số số hạng(trong ngoặc nhé)là
(2019-2):1+1=2018
S=(2019+2).2018=4078378
=>S=4078378
A=22+23+24+...+22019A=1+22+23+24+...+22019
⇔2A=23+24+25+...+22020⇔2A=2+23+24+25+...+22019
⇔2A - A = \(2^{2020}-2^{^2}\)
\(\Leftrightarrow A=2^{^2}\left(2^{^{2019}}-1\right)\)
Bài 1: Rút gọn
\(A=\dfrac{-56\cdot49+\left(-49\right)\cdot44}{73\cdot14+\left(-14\right)\cdot\left(-27\right)}\)
\(=\dfrac{49\cdot\left(-56-44\right)}{14\cdot\left(73+27\right)}\)
\(=\dfrac{-49\cdot100}{14\cdot100}=\dfrac{-7}{2}\)