một người đi từ A đến B với vận tốc 40km/h. sau khi đến B nghỉ 30 phút thì người đó quay lại trở về từ B đến A với vận tốc 30km/h. Tổng thời gian cả đi và về là 9h15p(kể cả thời gian nghỉ tại B). Tính độ dài đoạn đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài quãng đường AB là x
Thời gian đi là x/40(h)
Thời gian về là x/30(h)
Theo đề, ta có: x/40+x/30=8,75
hay x=150
9h15p=9,25h
30p=0,5h
Gọi quãng đường AB là x (km) đk: x>0
Thời gian xe đi từ A đến B: \(\dfrac{x}{40}\)(h)
Thời gian xe đi từ B về A: \(\dfrac{x}{30}\)(h)
Theo bài, ta có pt:
\(\dfrac{x}{40}+\dfrac{x}{30}+0,5=9,25\)
\(\Leftrightarrow\dfrac{x}{40}+\dfrac{x}{30}=8,75\)
\(\Leftrightarrow70x=10500\)
\(\Leftrightarrow x=150\) (thỏa mãn đk)
Vậy quãng đường AB dài 150 km
Đổi 30' = \(\dfrac{1}{2}\) h; 9h15' = \(\dfrac{37}{4}\)
Gọi quãng đường AB là x km (x > 0)
Ta có: Thời gian người đó đi từ A đến B là \(\dfrac{x}{40}\)h
Thời gian người đó đi từ B về A là \(\dfrac{x}{30}\)h
Theo đề bài ta có phương trình:
\(\dfrac{x}{40}+\dfrac{x}{30}+\dfrac{1}{2}=\dfrac{37}{4}\)
⇔ \(\dfrac{3x}{120}+\dfrac{4x}{120}+\dfrac{60}{120}=\dfrac{1110}{120}\)
⇔ 3x + 4x + 60 = 1110
⇔ 7x = 1110 - 60
⇔ 7x = 1050
⇔ x = 150 (thỏa mãn)
Vậy quãng đường AB dài 150 km
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{x}{30}+\dfrac{1}{2}+\dfrac{x}{40}=5+\dfrac{1}{6}\Rightarrow x=80\left(tm\right)\)
Đổi 30 phút = 1/2 giờ, vận tốc lúc về là 40 m/h
Gọi độ dãi quãng đường AB là x (km) với x>0
Thời gian người đó đi từ A đến B là: \(\dfrac{x}{50}\) giờ
Thời gian người đó đi từ B về A là: \(\dfrac{x}{40}\) giờ
Do tổng thời gian cả đi lẫn về (tính cả thời gian nghỉ) là 5 giờ nên ta có pt:
\(\dfrac{x}{40}+\dfrac{x}{50}+\dfrac{1}{2}=5\)
\(\Rightarrow\dfrac{9}{200}x=\dfrac{9}{2}\)
\(\Rightarrow x=100\left(km\right)\)
Gọi độ dài quãng đường AB là x ( km ) ( x> 0 )
Thời gian cả đi và về không tính thời gian nghỉ là 4,5 giờ
Thời gian đi từ A -B là \(\dfrac{x}{15}\left(h\right)\)
Thời gian về từ B - A là \(\dfrac{x}{30}\left(h\right)\)
Vì thời gian cả đi lẫn về ( ko tính thời gian nghỉ ) là 4,5 giờ , ta có PT
\(\dfrac{x}{15}+\dfrac{x}{30}=4,5\\ \Leftrightarrow\dfrac{2x}{30}+\dfrac{x}{30}=\dfrac{135}{30}\\ \Leftrightarrow2x+x=135\\ \Leftrightarrow3x=135\\ \Leftrightarrow x=45\left(km\right)\)
Gọi quãng đường AB là x
Thời gian đi xe đạp là \(\dfrac{x}{15}\)
Thời gian đi xe máy là \(\dfrac{x}{30}\)
Thời gian đi và về là: 5,75-1,25=4,5
Theo đề bài ta có:
\(\dfrac{x}{15}+\dfrac{x}{30}=4,5\)
\(\Leftrightarrow\dfrac{2x+x}{30}=\dfrac{135}{30}\)
\(\Leftrightarrow3x=135\)
\(\Leftrightarrow x=45\left(km\right)\left(tm\right)\)
10 phút = \(\dfrac{1}{6}\) giờ
6 giờ 40 phút = \(\dfrac{20}{3}\) (giờ)
Gọi x (km) là độ dài quãng đường AB (Điều kiện: x ∈ Z; x > 0)
Thời gian đi từ A đến B là \(\dfrac{x}{30}\) (giờ)
Thời gian đi từ B đến A là \(\dfrac{x}{35}\) (giờ)
Theo đề bài ta có phương trình:
\(\dfrac{x}{30}+\dfrac{x}{35}+\dfrac{1}{6}\) = \(\dfrac{20}{3}\)
MSC (mẫu số chung): 1050
Quy đồng mẫu hai vế và khử mẫu ta được:
35x + 30x + 175 = 7000
⇔ 35x + 30x = 7000 - 175
⇔ 65x = 6825
⇔ x = 105 (nhận)
Vậy quãng đường AB dài 105 km
Gọi độ dài AB là x
Theo đề, ta có: x/30+x/25+1/6=5+2/3
=>x=75
Lời giải:
Thời gian đi lần về (không tính thời gian nghỉ) là:
$5h40'-10'=5h30'=5,5h$
Thời gian đi: $\frac{AB}{30}$ (h)
Thời gian về: $\frac{AB}{25}$ (h)
Tổng thời gian đi và về: $\frac{AB}{30}+\frac{AB}{25}=5,5$
$\Leftrightarrow AB.\frac{11}{150}=5,5$
$\Rightarrow AB=75$ (km)
gọi quãng đường AB là x(x>0)km
thời gian đi từ A đến B là x/40 h
thời gian từ B về A là x/30 h
vì tổng thời gian cả đi và về là 9h15p=9.25h(tính cả thời gian nghỉ là 30p=0.5h)
nên ta có pt \(\dfrac{x}{40}+\dfrac{x}{30}+0.5=9.25\)
giải pt x=150
vậy quãng đường AB dài 150 km