cho 3 so thuc duong d e f thoa man \(\frac{d}{e+f}+\frac{e}{d+f}+\frac{f}{d+e}=\frac{3}{2}\)
CMR d=e=f
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình chỉ làm được bài 2 thôi. bạn có L I K E k để mình làm?
1. Có \(\frac{1}{2n}<\frac{1}{2n-1}<....<\frac{1}{n}\)
=>\(\frac{n}{2n}<\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)
(Vì từ n+1 đến 2n có n số hạng)
=> dpcm
câu 2: gọi là A đi.
bước 1: A>1
ta có: \(\frac{e}{d+f}>\frac{e}{d+e+f}\) (khi cùng tử, mẫu càng lớn thì p/s càng nhỏ)
tương tự thì: \(A>\frac{e}{d+f+e}+\frac{d}{d+e+f}+\frac{f}{d+e+f}=\frac{e+d+f}{d+e+f}=1\Rightarrow A>1\)
bước 2: A<2
ta có: nếu a>b thì \(\frac{a}{b}>\frac{a+m}{b+m}\); nếu a<b thì \(\frac{a}{b}
2/ d/e+f +e/f+d +f/d+e>d/e+f+d + e/f+d+e +f/d+e+f =d+e+f/d+e+f=1(1)
d/e+f + e/f+d + f/d+e <2d/e+f+d +2e/d+f+e + 2f/d+e+f = 2(d+e+f)/d+e+f =2 (2)
từ 1 và 3 =>đpcm
Cho hỏi a, b, c, d, e, f là số thực hay số nguyên ?
Em tham khảo thêm tích chất dãy tỉ số bằng nhau SGK 7 em nhé
Đặt \(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=k\) (1) \(\Rightarrow\) a=kb, c=dk, e=kf
ta có \(\frac{a+c+e}{b+d+f}=\frac{kb+kd+kf}{b+d+f}=\frac{k\left(b+d+f\right)}{b+d+f}=k\)(2)
từ (1) và (2) suy ra \(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}\)
Giải:
Ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{14}{22}\\\dfrac{c}{d}=\dfrac{11}{13}\\\dfrac{e}{f}=\dfrac{13}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{7}{11}\\\dfrac{c}{d}=\dfrac{11}{13}\\\dfrac{e}{f}=\dfrac{13}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{7}=\dfrac{b}{11}\\\dfrac{c}{11}=\dfrac{d}{13}\\\dfrac{e}{13}=\dfrac{f}{17}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{7}=\dfrac{b}{11}=\dfrac{a+b}{7+11}=\dfrac{M}{18}\left(1\right)\\\dfrac{c}{11}=\dfrac{d}{13}=\dfrac{c+d}{11+13}=\dfrac{M}{24}\left(2\right)\\\dfrac{e}{13}=\dfrac{f}{17}=\dfrac{e+f}{13+17}=\dfrac{M}{30}\left(3\right)\end{matrix}\right.\)
Kết hợp \(\left(1\right);\left(2\right)\) và \(\left(3\right)\)
\(\Rightarrow M\in BC\left(18;24;30\right)\)
Mặt khác \(M\) là số tự nhiên nhỏ nhất có 4 chữ số
Nên \(M=1080\)
Vậy \(M=1080\)
Ta áp dụng tính chất của dãy tỉ số bằng nhau thì ta có dãy phân số trên
Đặt;\(\frac{a}{d}=x;\frac{b}{e}=y;\frac{c}{f}=z\left(x,y,z>0\right)\)\(\Rightarrow\)Ta cần tính \(x^2+y^2+z^2\)
Suy ra ta có hệ phương trình;\(\hept{\begin{cases}x+y+z=1\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\end{cases}}\)
Từ (2) suy ra xy+yz+xz=0
Lại có \(1=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
Suy ra \(x^2+y^2+z^2=1\)
Áp dụng bất đẳng thức Nesbitt với 3 số dương d,e,f ta có: \(\frac{d}{e+f}+\frac{e}{d+f}+\frac{f}{d+e}\ge\frac{3}{2}\)
Dấu "=" xảy ra khi d=e=f
Chứng minh rằng \(\frac{d}{e+f}+\frac{e}{d+f}+\frac{f}{d+e}\ge\frac{3}{2}\)\(\forall d,e,f>0\)
\(\Rightarrow\frac{d}{e+f}+1+\frac{e}{d+f}+1+\frac{f}{d+e}+1\ge\frac{9}{2}\)
\(\Rightarrow\frac{d+e+f}{e+f}+\frac{d+e+f}{d+f}+\frac{d+e+f}{d+e}\ge\frac{9}{2}\)
\(\Rightarrow\left(d+e+f\right)\left(\frac{1}{e+f}+\frac{1}{d+f}+\frac{1}{d+e}\right)\ge\frac{9}{2}\)
\(\Rightarrow2\left(d+e+f\right)\left(\frac{1}{e+f}+\frac{1}{d+f}+\frac{1}{d+e}\right)\ge9\)
\(\Rightarrow\left(e+f+d+f+d+e\right)\left(\frac{1}{e+f}+\frac{1}{d+f}+\frac{1}{d+e}\right)\ge9\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left(e+f+d+f+d+e\right)\left(\frac{1}{e+f}+\frac{1}{d+f}+\frac{1}{d+e}\right)\ge9\sqrt[3]{\left(e+f\right)\left(d+f\right)\left(d+e\right).\frac{1}{\left(e+f\right)\left(d+f\right)\left(d+e\right)}}=9\)
Vậy ta có đpcm
Dấu " = " xảy ra khi \(e=d=f\) ( đpcm )