32014 + 3n chia hết cho 10, tìm n nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n2 + 3n + 13 = n( n+ 3 ) + 13 chia hết cho n + 3
=> 13 chia hết cho n + 3 => n + 3 thuộc Ư(13) = { - 13 ; - 1 ; 1; 13 }
Ta có bảng :
n+3 | -13 | -1 | 1 | 13 |
n | -16 | -4 | -2 | 10 |
Mà n nhỏ nhất
=> n = - 16
Vậy n =-16
Ta có: \(n^2+3n-13=n\left(n+3\right)-13\)
Mà \(n\left(n+3\right)\) chia hết cho n+3
Nên để \(n^2+3n-13\) chia hết thì \(-13\) chia hết cho n(n+3)
\(\Rightarrow n\left(n+3\right)\inƯ\left(13\right)\)
\(n\left(n+3\right)=-13;n\left(n+3\right)=-1;n\left(n+3\right)=1;n\left(n+3\right)=13\)
Ko có TH nào là số nguyên coi lại đề đi bạn
n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3 Mà n(n+3) chia hết cho n+3
=>13 chia hết cho n+3 Mà n thuộc Z
=>n+3 thuộc {-13, -1, 1, 13}
=>n thuộc {-16, -4, -2, 10}
Mà n là giá trị nhỏ nhất
=>n=-16
Vậy n=-16
Ta có:
n2 + 3n - 13 = n(n + 3) – 13
Do n(n + 3) chia hết cho n + 3 nên để (n2 + 3n – 13) chia hết cho (n+3) thì (n+3) thuộc Ư(13).
=> (n+3) thuộc {-13, -1, 1, 13}
Mà N là STN nên ta tìm được n = 10
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
3^2014+3^n chia hết cho 10
=> 3^2014+n phải chia hết cho 10
=> B(3)={0;3;6;9;12;15;18;21;24;27;30;33;36..........}
=>Các B(3) + 2014 để chia hết cho 10
=>{6;36.....}
Số nhỏ nhất là 6=> n=6
Ta có: 32014=32.3212=9.(34)503=9.81503 => Có tận cùng là 1.9=..9
Để 32014+3n chia hết cho 10 thì phải có tận cùng là 0
=> 3n phải có tận cùng là 1. Phân tích 3n=\(\left(3^4\right)^{\frac{n}{4}}=81^{\frac{n}{4}}\) => Để 3n có tận cùng là 1 thì n phải chia hết cho 4 => n nhỏ nhất =4
ĐS: n=4