Tính giới hạn lớp 11:
Limx->3 căn (x2 -5) - 2 / x - căn ( 2x + 3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Áp dụng công thức L'Hospital:
\(\lim\limits_{x\to 0}\frac{\sqrt{x+1}-\sqrt{1-x}}{\sqrt[3]{x+1}-\sqrt{1-x}}=\lim\limits_{x\to 0}\frac{\frac{1}{2}(x+1)^{\frac{-1}{2}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}{\frac{1}{3}(x+1)^{\frac{-2}{3}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}=\frac{1}{\frac{5}{6}}=\frac{6}{5}\)
b.
\(\lim\limits_{x\to 0}(\frac{1}{x}-\frac{1}{x^2})=\lim\limits_{x\to 0}\frac{x-1}{x^2}=-\infty\)
c. Áp dụng quy tắc L'Hospital:
\(\lim\limits_{x\to +\infty}\frac{x^4-x^3+11}{2x-7}=\lim\limits_{x\to +\infty}\frac{4x^3-3x^2}{2}=+\infty \)
d.
\(\lim\limits_{x\to 5}\frac{7}{(x-1)^2}.\frac{2x+1}{2x-3}=\frac{7}{(5-1)^2}.\frac{2.5+11}{2.5-3}=\frac{11}{16}\)
Đáp án C
L = lim x → 1 1 − x 2 − x − 1 = lim x → 1 1 − x 2 − x + 1 1 − x = lim x → 1 2 − x + 1 = 2
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x+8}+\sqrt{2x+2}-5x}{x-1}\\ =\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x+8}-3+\sqrt{2x+2}-2+5-5x}{x-1}\\ =\lim\limits_{x\rightarrow1}\dfrac{x-1}{\left(x-1\right)\left(\sqrt{x+8}+3\right)}+\lim\limits_{x\rightarrow1}\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(\sqrt{2x+2}+2\right)}+\lim\limits_{x\rightarrow1}\dfrac{5\left(1-x\right)}{x-1}\\ =\dfrac{1}{6}+\dfrac{1}{2}-5=-\dfrac{13}{3}\)