Tìm số tự nhiên x, biết:
a)
\(\dfrac{ }{36,75x4}\)< \(\dfrac{367544}{10000}\)
b) \(\dfrac{ }{ab5,728}\)<\(\dfrac{ }{ab5,7x4}\)<\(\dfrac{ }{ab5,755}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`4/11<x/20<5/11`
`=>80/220<11x/220<100/220`
`=>80<11x<100`
`=> x=8` hoặc `x=9`
\(\dfrac{1}{x}+\dfrac{y}{3}=\dfrac{5}{6}\Rightarrow\dfrac{6}{6x}+\dfrac{2xy}{6x}=\dfrac{5x}{6x}\Rightarrow6+2xy=5x\)
\(\Rightarrow5x-2xy=6\Rightarrow x\left(5-2y\right)=6\)
Do \(x,y\) là số tự nhiên nên \(x\inƯ^+\left(6\right)\)
TH1: \(x=1\Rightarrow5-2y=6\Rightarrow y=-\dfrac{1}{2}\) (loại)
TH2: \(x=2\Rightarrow5-2y=3\Rightarrow y=1\) (TM)
TH3: \(x=3\Rightarrow5-2y=2\Rightarrow y=\dfrac{3}{2}\) (Loại)
TH4: \(x=6\Rightarrow5-2y=1\Rightarrow y=2\) (TM)
\(\Leftrightarrow6+2xy=5x\left(x\ne0\right)\)
\(\Leftrightarrow5x-2xy=6\Leftrightarrow x\left(5-2y\right)=6\)
\(\Leftrightarrow x=\dfrac{6}{5-2y}\)
Để x nguyên thì 5-2y phải là ước của 6
\(\Rightarrow5-2y=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow y=\left\{4;3;2;1\right\}\Rightarrow x=\left\{-2;-6;6;2\right\}\)
1.
=2/5 x 12/3 + 2/5 x 15/3 + 2/5 x 1
= 2/5 x (12/3 + 15/3 + 1)
=2/5 x 1
=2/5
2.a=1;2
Bài 1: Ta có: \(4\dfrac{3}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{23}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{138}{30}< X< \dfrac{200}{3}\)
\(\Rightarrow X\in\left\{\dfrac{160}{30};\dfrac{161}{30};\dfrac{162}{30};...;\dfrac{198}{30};\dfrac{199}{30}\right\}\)
Bài 2: \(X-2019\dfrac{2}{13}=3\dfrac{7}{26}+4\dfrac{7}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{85}{26}+\dfrac{215}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{385}{52}\)
\(\Rightarrow X=\dfrac{105381}{52}\)
a: \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}B=\dfrac{-3}{3-1}=\dfrac{-3}{2}\\B=\dfrac{-\left(-1\right)}{3-\left(-1\right)}=\dfrac{1}{4}\end{matrix}\right.\)
\(\overline{36,75x4}\) < \(\dfrac{367544}{10000}\)
\(\overline{36,75x4}\) < 36,7544
vì 36,7504 < 36,7514< 36,7524< 36,7534< 36,7544
\(x\) = 0; 1; 2; 3
b, \(\overline{ab5,728}\) < \(\overline{ab5,7x4}\) < \(\overline{ab5,755}\)
vì \(\overline{ab5,728}\) < \(\overline{ab5,734}\) < \(\overline{ab5,744}\) < \(\overline{ab5,754}\) < \(\overline{ab5,755}\)
vậy \(x\) = 3; 4; 5