K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TC
Thầy Cao Đô
Giáo viên VIP
15 tháng 12 2022

loading...

a) Xét $\Delta DME$ và $\Delta NMF$ có:

$EM = MF$ ($M$ là trung điểm của $EF$);

$DM = MN$ ($N$ đối xứng với D qua $M$);

$\widehat{EMD} = \widehat{NMF}$ (hai góc đối đỉnh);

Suy ra $\Delta DME$ và $\Delta NMF$ (c.g.c).

Suy ra $DE = NF$

và $DE$ // $NF$ (do hai góc so le trong $\widehat{MED}$ và $\widehat{MFN}$ bằng nhau).

Do đó $DENF$ là hình bình hành, có một góc vuông nên $DENF$ là hình chữ nhật em nhé.

b) Xét tam giác $DEF$ vuông tại $D$ có:

$DE^2 + DF^2 = EF^2$ suy ra $EF = 5$ cm;

Mà $DM = \dfrac12 DN$ và $DN = EF$ nên $DM = 2,5$ cm.

a: EF=5cm

DM=2,5cm

b: Xét tứ giác DENF có

M là trung điểm của EF

M là trung điểm của DN

Do đó: DENF là hình bình hành

mà \(\widehat{EDF}=90^0\)

nên DENF là hình chữ nhật

c: Xét tứ giác FBEA có 

FB//EA

FB=EA

Do đó: FBEA là hình bình hành

Suy ra: Hai đường chéo FE và BA cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của FE

nên M là trung điểm của BA

hay M,A,B thẳng hàng

23 tháng 12 2021

a/ Xét tứ giác DPMQ có

EDF=MQD=ˆMPD=90oEDF^=MQD^=MPD^=90o

=> Tứ giác DPMQ là hcn

b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF

c/ Có I đx M qua DE

=> DE là đường t/trực của IM

=> DI = DM (1)

=> t/g DIM cân tại D có DE là đường trung trực

=> DE đồng thời là đường pg

=> ˆIDE=ˆEDMIDE^=EDM^ (2) 

CMTT : DM = DK (3) ; ˆKDF=ˆFDMKDF^=FDM^ (4)

Từ (2) ; (4)

=> ∠IDE+EDF+KDF=IDK=180oIDE^+EDF^+KDF^=IDK^=180o

=> I,D,K thẳng hàng 

Từ (1) ; (3)=> ID = DK

Do đó D là trđ IK

=> I đx K qua D

26 tháng 12 2021

a: DQ=2,5cm

7 tháng 8 2019

a, Ta có: DE//BC \(\Rightarrow\widehat{DEB}+\widehat{EBF}=180\)

mà góc EBF =90 => góc DEB =90    (1)

Chứng minh tương tự với DF//AB

\(\Rightarrow\widehat{EDF}=90;\widehat{BFD}=90\)   (2)

Từ (1) và (2) => tứ giác BEDF là hình chữ nhật

7 tháng 8 2019

a) vì ED//BC và DF//AB

\(\Delta ABC\)vuông tại B

Nên \(DE\perp AB\)và \(DF\perp BC\)

Xét tứ giác BEDF có:

\(\widehat{B}=\widehat{DEB}=\widehat{DFB}=90^0\)

 Vậy tứ giác BEDF là hình chữ nhật       

1: BC=5cm

Xét ΔABC có

D là trung điểm của AB

M là trung điểm của BC

Do đó: DM là đường trung bình

=>DM=AC/2=2(cm)

2: Xét tứ giác ACME có 

ME//AC

ME=AC

Do đó: ACME là hình bình hành

Xét tứ giác AEBM có

D là trung điểm của ME

D là trung điểm của AB

Do đó: AEBM là hình bình hành

mà MA=MB

nên AEBM là hình thoi

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua Ia) Chứng minh tứ...
Đọc tiếp

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.

Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.

Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.

Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua I

a) Chứng minh tứ giác DKEH là hình chữ nhật.

b) Nếu tam giác DEF vuông cân tại D thì tứ giác DKEH là hình gì ? Vì sao ? Vẽ hình minh họa.

c) Vẽ CA vuông DF ( A thuộc DF). Chứng minh tam giác AHK là tam giác vuông.

Bài 4 : Cho tam giác DEF, gọi M,N lần lượt là trung điểm của DE, DF. Qua F vẽ đường thẳng song song với DE cắt đường thẳng MN tại K

a) Chứng minh tứ giác MEFK là hình bình hành.

b) Biết MN=5 cm. Tính độ dài EF?

Bài 5: Cho tam giác ABC cân tại A. Gọi H,I lần lượt là trung điểm của BC, AC.

a) Tứ giác HIAB là hình gì ? Vì sao?

b) Gọi Q là điểm đối xứng của H qua I. Chứng minh tứ giác AHCQ là hình chữ nhật.

c) Tìm thêm điều kiện của tam giác ABC cân tại A để tứ giác AHCQ là hình vuông.

0
27 tháng 11 2017

3 tháng 11 2022

cho \(\Delta ABCD\)

26 tháng 12 2022

hum