K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

Tự lực suy nghĩ mà làm một lần đi, đừng hỏi nữa.

24 tháng 2 2017

Mình có hỏi nữa đâu!

11 tháng 9 2017

Bất cứ đa thức nào có dạng: \(f\left(x\right)=x^3\left(ax^2+bx+c\right)\) đều thỏa mãn đề bài

11 tháng 9 2017

sai rồi hôm nay cô giáo em chữa có phải thế đâu 

18 tháng 4 2016

Ta có:

f (-1) = (2-a)(-1)2 + 5a(-1) - 7 = 2 - a - 5a - 7 = - 6a - 5

f(2) = (2-a)22 + 5a.2 - 7 = 8 - 4a + 10a - 7 = 6a + 1

f(-1) = f(2) => - 6a - 5 = 6a + 1

<=> 12a = - 6 => a = - 1/2

18 tháng 4 2016

Ta có:

f(-1)=(2-a)*(-1)2+5a*(-1)-7

       =2-a-5a-7

       =-5-6a

f(2)=(2-a)*22+5a*2-7

     =(2-a)*4+10a-7

    =8-4a+10a-7

    =6a+1

Mà f(-1)=f(2). Suy ra -5-6a=6a+1

Suy ra 12a=-6

              a=-1/2

Vậy a=-1/2

21 tháng 2 2017

Với f(1) = 1, ta có:

a.1 + b = 1

hay: a + b = 1

~> b = 1 - a (1)

Với f(2) = 4, ta có:

a.2 +b =4

hay: a + b = 4 (2)

Thay (1) vào (2), ta có:

2a + b = 4

hay: 2a + 1 - a = 4

1a + 1 = 4

a = 4 - 1

a = 3

Lại có:

a + b = 1

hay: 3 + b = 1

b = 1 - 3

b = -2

Vậy, a = 3; b = -2

---

Bận ăn cơm nên giờ mới trả lời được :3

21 tháng 2 2017

Cảm ơn bạn nhiều!eoeoeoeovui

16 tháng 8 2017

Ta có \(f\left(-2\right)\times f\left(-3\right)=\left(4a-2b+c\right).\left(9a+3b+c\right)=\left(4a-2b+c\right).\left[13a+b+2c-\left(4a-2b+c\right)\right]\)

\(13a+b+2c=0\) theo giả thiết.

\(\Rightarrow f\left(-2\right)\times f\left(3\right)=-\left[\left(4a-2b+c\right)^2\right]\)

\(\left(4a-2b+c\right)^2\) luôn \(\ge0\Rightarrow f\left(-2\right)\times f\left(3\right)\) \(\le0\)

18 tháng 8 2017

Thanks bạn nhahihi

14 tháng 3 2017

Để biểu thức đạt nhỏ nhất thì (2x-3)4 đạt nhỏ nhất.

Lại có: (2x-3)4=[(2x-3)2]2 >=0

=> giá trị nhỏ nhất của nó là =0

=> giá trị nhỏ nhất là: -2

Đạt được khi x=3/2

7 tháng 3 2017

Vì \(\left|y-2\right|\ge0\forall y\)

\(\Rightarrow\left|y-2\right|-3\ge-3\forall y\)

Dấu "=" xảy ra <=> |y - 2| = 0 => y = 2

Vậy GTNN của \(\left|y-2\right|-3\) là - 3 tại y = 2

Vì \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2-19\ge-19\forall x\)

Dấu "=" xảy ra <=>\(\left(x+1\right)^2=0\Rightarrow x=-1\)

Vậy ......................

7 tháng 3 2017

Cảm ơn bạn nhiều nha!!!