thay các chữ A, B, C bằng các chữ số thích hợp:
BAN= 3x AN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toán lớp 3 thì chắc làm theo thế này!
c + c + c = 9 hoặc 19 ( loại )
=> c = 3
b + b = 8 hoặc 18
=> b = 4 hoặc b = 9
=> a = 7 hoặc a = 6
Thử lại với a = 7; b = 4 ; c = 3 ta có:
743 + 43 + 3 = 789 ( thỏa mãn )
Thử lại với a = 6; b = 9; c = 3, ta có:
693 + 93 + 3 = 789 ( thỏa mãn )
Vậy a = 7; b = 4; c = 3 hoặc a = 6; b = 9; c = 3.
Khi ta dặt tính theo cột dọc. ta thấy: c + c + c = 9
Vậy c = 3
b + b = 8
Vậy b = 4
a = 7
Đ/S: a = 7
b = 4
c = 3
Ta có: abc × dd = 7733
=> abc × d × 11 = 703 × 11
=> abc × d = 703
Mà 703 = 703 × 1
Vậy abc = 703; dd = 11.
abc*cd=7733
abc*d*11=11*703
abc*d=703*1
d=1
abc=703
a=7
b=0
c=3
abc x dd = 7733
=> abc x d x 11 = 703 x 11
=> abc x d = 703
Mà 703 = 703 x 1
=> d = 1 ; abc = 703
số abcd0 bằng 10 lần abcd nên hiệu của chúng bằng 9 lần số abcd .Hiệu đó là 17865.Vậy abcd =17865 :9 = 1985 .Suy ra a=1;b=9;c=8;d=5.Thử lại 19850-1985=17865
abcd0 - abcd = 17865
abcd x 10 - abcd x 1 = 17865
abcd x ( 10 - 1 ) = 17865
abcd x 9 = 17865
abcd = 17865 : 9
abcd = 1985
Vậy a = 1 , b = 9 , c = 8 , d = 5
ta có:
ab.cc=abcabc:abc
ab.cc=1001
ab.c.11=1001
ab.c=91
Vì 91=91.1=13.7
Nếu ab=91, c=1 (loại vì b=c=1)
Vậy ab=13, c=7. Ta Được
13.77.137=137137
\(\overline{ba}\times7=\overline{caa}\)
\(a\times7\) có đuôi là \(a\)
\(\Rightarrow a=5\)
\(\Rightarrow\overline{b5}\times7=\overline{caa}\)
\(\Rightarrow b=6vàc=4\)
Kluận : \(a=5;b=6;c=4\)
a, \(\overline{ab,b}\) - \(\overline{c,c}\) = \(\overline{0,a}\)
(\(\overline{ab,b}\) - \(\overline{c,c}\)) \(\times\)10 = \(\overline{0,a}\)
\(\overline{abb}\) - \(cc\) = \(a\)
\(a\times\)100 + \(b\)\(\times\)11 - \(c\times\)11 = \(a\)
\(a\times\)100 + \(b\times\)11 - \(c\times\)11 - \(a\) = 0
\(a\times\)99 + \(b\) \(\times\)11 - \(c\times\) 11 = 0
11\(\times\)(\(a\times\)9 + \(b\) - \(c\)) = 0
\(a\times\) 9 + \(b\) - \(c\) = 0
\(a\times\) 9 = \(c-b\) ⇒ \(c-b\)⋮9 ⇒ \(c\) = \(b\) ; \(c\) - \(b\) = 9;
th: \(c\) = \(b\) ⇒ \(a\times\)9 = 0 ⇒ \(a\) = 0 (loại)
th: \(c-b=9\) ⇒ \(c=9+b\) ⇒ \(b\) = 0; \(c\) = 9
\(a\times\) 9 = 9 - 0 = 9 ⇒ \(a\) = 1
Vậy thay \(a=1;b=0;c=9\) vào biểu thức: \(\overline{ab,b}-\overline{c,c}=\overline{o,a}\) ta được:
10,0 -9,9 = 0,1
b, \(\overline{b,a}\) - \(\overline{a,b}\) = 2,7
(\(\overline{b,a}\) - \(\overline{a,b}\))\(\times\)10 = 2,7 \(\times\) 10
\(\overline{ba}\) - \(\overline{ab}\) = 27
\(b\times10+a-a\times10-b\) = 27
(\(b\times10\) - \(b\)) - (\(a\) \(\times\) 10 - \(a\)) = 27
(\(b\times10-b\times1\)) - (\(a\times\)10 - \(a\)\(\times\)1) = 27
\(b\)\(\times\)(10 -1) - \(a\) \(\times\)( 10 - 1) =27
\(b\times\) 9 - \(a\times9\) = 27
9\(\times\) (\(b-a\)) = 27
\(b-a\) = 27 : 9
\(b-a\) = 3 ⇒ \(b\) = 3 + \(a\) ≤ 9 ⇒ \(a\) ≤ 9 - 3 = 6
Lập bảng ta có:
\(a\) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
\(b\) = \(a+3\) | 3 | 4 | 5 | 6 | 7 | 8 |
9 |
Thay các giá trị của \(a;b\) lần lượt vào biểu thức \(\overline{b,a}-\overline{a,b}\) = 2,7 ta có:
3,0 - 0,3 = 2,7
4,1 - 1,4 = 2,7
5,2 - 2,5 = 2.7
6,3 - 3,6 = 2,7
8,5 - 5,8 = 2,7
9,6 - 6,9 = 2,7