hai đội lao động nếu cùng làm chung thì sau 4 ngày sẽ hoàn thành công việc nhưng lúc đầu đội 1 đã làm được 9 ngày thì đội 2 mới tới và 2 đội làm chung 1 ngày nữa thì công việc mới hoàn thành. Hỏi mỗi đội làm một mình thì sau bao lâu sẽ xong công việc?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A là số công việc đội 1 và đội 2 làm được trong 1 ngày.
Gọi B là số công việc đội 3 làm được trong 1 ngày.
Cả 3 đội trong 1 ngày làm được A + B công việc
Theo bài ra ta có hệ phương trình
4 * (A + B) + 12 * A = 1 hay 4A +4B + 12A = 1 hay 16A +4B = 1 (1)
6 * (A + B) + 9 * A = 1 hay 6A + 6B + 9A =1 hay 15A + 6B = 1 (2)
Nhân (1) với 3, nhân (2) với 2 ta có hệ
48A + 12B = 3 (3)
30A + 12B = 2 (4)
Trừ (3) cho (4) ta có
18A = 1, suy ra A = 1/18
Thời gian chỉ đội 1 và đội 2 cùng làm hoàn thành công việc là
1 : 1/18 = 18 ngày
Vậy chỉ đội 1 và đội 2 cùng làm thì sau 18 ngày sẽ hoàn thành công việc.
Gọi thời gian làm 1 mình xong việc của đội 1 là x ngày và của đội 2 là y ngày (với x>10;y>0)
Trong 1 ngày đội 1 làm được \(\dfrac{1}{x}\) phần công việc và đội 2 làm được \(\dfrac{1}{y}\) phần công việc
Do làm riêng đội 1 làm chậm hơn đội 2 là 10 ngày nên ta có:
\(x-y=10\) (1)
Hai đội làm chung trong 1 ngày được \(\dfrac{1}{x}+\dfrac{1}{y}\) phần công việc
Do 2 đội làm chung thì hoàn thành trong 12 ngày nên ta có:
\(12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\) (2)
Từ (1) và (2) ta có hệ:
\(\left\{{}\begin{matrix}x-y=10\\12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=x-10\\12\left(x+y\right)=xy\end{matrix}\right.\)
Thế pt trên xuống pt dưới:
\(12\left(x+x-10\right)=x\left(x-10\right)\)
\(\Leftrightarrow x^2-34x+120=0\Rightarrow\left[{}\begin{matrix}x=30\\x=4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow y=x-10=20\)
Vậy đội 1 làm 1 mình xong trong 30 ngày và đội 2 xong trong 20 ngày
Gọi thời gian làm riêng hoàn thành công việc của đội một là x(ngày)
(Điều kiện: x>10)
Thời gian làm riêng hoàn thành công việc của đội 2 là x-10(ngày)
Trong 1 ngày, đội 1 làm được \(\dfrac{1}{x}\left(côngviệc\right)\)
Trong 1 ngày, đội 2 làm được \(\dfrac{1}{x-10}\left(côngviệc\right)\)
Trong 1 ngày, hai đội làm được \(\dfrac{1}{12}\left(côngviệc\right)\)
Do đó, ta có phương trình:
\(\dfrac{1}{x}+\dfrac{1}{x-10}=\dfrac{1}{12}\)
=>\(\dfrac{x-10+x}{x\left(x-10\right)}=\dfrac{1}{12}\)
=>\(x\left(x-10\right)=12\left(2x-10\right)\)
=>\(x^2-10x=24x-120\)
=>\(x^2-34x+120=0\)
=>(x-30)(x-4)=0
=>\(\left[{}\begin{matrix}x-30=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Vậy: Thời gian làm riêng hoàn thành công việc của đội 1 là 30 ngày
Thời gian làm riêng hoàn thành công việc của đội 2 là 30-10=20 ngày
trong tháng giêng 2 tổ dự định sản xuất 720 sản phẩm. nhờ cải tiến kĩ thuật tổ 1 vượt mức 15% tổ 2 vượt mức 12% nên sản xuất được 819 sản phẩm. hỏi mỗi tổ sản xuất được bao nhiêu sản phẩm?
Gọi (ngày) là thời gian đội I làm một mình xong công việc với năng suất ban đầu ,
(ngày) là thời gian đội II làm một mình xong công việc với năng suất ban đầu
Trong 1 ngày đội I làm được (công việc),
đội II làm được (công việc)
Hai đội xây dựng làm chung theo dự định trong 12 ngày xong nên ta có:
(1)
Cả hai đội làm chung 8 ngày thì được (công việc)
Số công việc còn lại của đội II làm là: (công việc)
Năng suất của đội II tăng gấp 2 lần nên 1 ngày làm được công việc
Khi năng suất tăng họ làm 3,5 ngày thì hoàn thành phần công việc còn lại nên ta có:
(2)
Thay vào (1) suy ra
Vậy nếu làm theo dự định thời gian đội I làm một mình xong công việc là ngày, thời gian đội II làm một mình xong công việc là ngày.
Gọi x,y theo thứ tư là thời gian mà mỗi đội làm một mình thì hoàn thành công việc.
Với năng suất ban đầu: x,y > 0 và tính theo đơn vị ngày.
Trong 1 ngày đội I làm được 1/x công việc. 1 ngày đội II làm được 1/y công việc. 1 ngày cả 2 đội làm được 1/12 công việc.
Ta có phương trình: 1/x + 1/y = 1/12 (công việc)( 1)
Trong 8 ngày cả hai đội làm được 8. 1/12 = 2/3 (công việc).
Sau khi một đội nghỉ, năng suất của đội II là 2/y. Họ phải làm trong 3,5 ngày thì xong công việc nên ta có phương trình 1/3 : 2/y = 7/2
(2)
Ta có hệ:Giải hệ1,2 này, ta được x = 28 (ngày); y = 21(ngày) Chú ý: Ta có thể đặt hệ
Nếu làm chung thì ba đội sẽ hoàn thành công việc trong:
\(\frac{12+18+36}{3}\)= 22 ngày
mk xin lỗi nhưng bài của bạn ko đúng rồi ! vì bn ra kết quả còn lớn hơn 1 đội làm
so cong viec la 1, 1 ngay thi doi 1 lam dc 1/x cong viec, doi 2 lam dc 1/y cong viec
nen => moi ngay 2 doi lam dc 1/x cong 1/y cong viec, ca 2 doi phai mat 12 ngay moi hoan thanh xong cv nen moi ngay ho lam dc 1/12 cv => pt1
trong vong 8 ngay thi 2 doi hoan thanh dc 8*(1/x cong 1/y) =8/x cong 8/y
so cong viec con lai doi 2 phai lam, nhung vi nang suat cua ho tang gap 2 => so công viec moi ngay cua ho lam dc la 2/y
ho phai lam trong 3,5 ngay moi xong nen trong 3,5 ngay do ho lam dc 3,5*2/y
tong so cong viêc ca 2 doi lam trong 8 ngay cong voi so cong viêc con lai doi 2 hoan thanh la 1 => pt2
1 ngày đội I làm đc 1/x (phần công việc)
Trog 8 ngày đội I làm đc 8/x (phần công việc)
1 ngày đội II làm đc 1/y (phần công việc)
Trog 8 ngày đội II làm đc 8/y (phần công việc)
Vì năng suất của đội II tăng gấp đôi và họ đã làm xong công vc trong 3.5 ngày nên trog 3,5 ngày làm đc: 3,5.2/ y
Mà tổng số cv của cả 2 đội là 1 nên ta có PT:
8/x+ 8/ y + 3,5.2/ y = 1
Gọi thời gian làm riêng để hoàn thành công việc của đội 1 là x>0 (ngày), đội 2 là y>0 (ngày)
Trong 1 ngày hai đội lần lượt làm được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần công việc
Do 2 đội làm chung thì hoàn thành sau 12 ngày nên: \(12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)
Do đội 1 hoàn thành chậm hơn đội 2 là 10 ngày nên: \(x=y+10\)
Ta có hệ pt:
\(\left\{{}\begin{matrix}12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\\x=y+10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}12\left(\dfrac{1}{y+10}+\dfrac{1}{y}\right)=1\\x=y+10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}12\left(2y+10\right)=y\left(y+10\right)\\x=y+10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^2-14y-120=0\\x=y+10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=20\\x=30\end{matrix}\right.\)
Gọi thời gian đội I, đội II làm một mình xong công việc lần lượt là x, y (đơn vị ngày, đk :x, y > 4)
+ Thì mỗi ngày đội I làm được 1/x (công việc), đội II được 1/y (công việc)
Vì hai đội cùng làm thì 4 ngày xong nên mỗi ngày hai đội làm được 1/4 (công việc), nên ta có phương trình 1/x + 1/y =1/4.
+ Phần công việc đội I làm trong 3 ngày là 3/x (công việc), phần công việc đội II làm trong 6 ngày là 6/y. Vì khi đội I làm 3 ngày, đội II làm 6 ngày thì xong công việc nên ta có pt : 3/x + 6/y = 1
ta có hpt :1/x + 1/y =1/4 và 3/x + 6/y = 1
=> x=6 , y=12
k mk nha!!