K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2016

Đặt tổng của 2005 số hạng đầu tiên của dãy là S

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{2005.2006}\)

\(S=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+..+\frac{2006-2005}{2005.2006}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{2005}-\frac{1}{2006}\)

\(S=1-\frac{1}{2006}=\frac{2005}{2006}\)
 

20 tháng 4 2016

Cho dãy số :1.2 ; 2.3 ; 3.4 ; 4.5 .........

=> Số hạng thứ 50 của dãy là: 50.51 = 2550

20 tháng 4 2016

số hạng thứ 50 là 50*51=2550

5 tháng 6 2016

1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2005.2006

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2005 - 1/2006

= 1 - 1/2006

= 2005/2006


1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2005.2006
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2005 - 1/2006
= 1 - 1/2006
= 2005/2006 

tích nha Thiên Thần Dễ Thươngavt687170_60by60.jpg
 

\(G=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)

\(=1\left(1+1\right)+2\left(1+2\right)+3\left(1+3\right)+...+99\left(1+99\right)\)

\(=\left(1^2+2^2+3^3+...+99^2\right)+\left(1+2+3+...+99\right)\)

\(=\dfrac{99\left(99+1\right)\left(2\cdot99+1\right)}{6}+\dfrac{99\cdot100}{2}\)

=328350+4950

=333300

24 tháng 11 2015

Từ 1 đến 9 cần số chữ số là

       (9-1)/1+1=9(chữ số)

Từ 10 đến 99 cần số chữ số là

       (99-10/1+1)*2=180

Có số chữ số có 3 chữ số là

       1989-180-9=1800(chữ số)

có số hạng có 3 chữ số là

        1800/3=600(số)

Số x là

(600-1)/1+100=699

       D/S 699                                                                  1 tick

14 tháng 5 2017

Ta thấy : 2,4 = 1,2 x 2

              7,2 = 2,4 x 3

              28,8 = 7,2 x 4

Vậy số hạng tiếp theo là : 28,8 x 5 =  144

                       Đáp số : 144

14 tháng 5 2017

cảm ơn bn nha

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(\begin{array}{l}{u_1} = \frac{1}{{1.2}} = \frac{1}{2}\\{u_2} = \frac{1}{{1.2}} + \frac{1}{{2.3}} = \frac{2}{3}\\{u_3} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} = \frac{3}{4}\\{u_n} = \frac{n}{{n + 1}}\end{array}\)

1: Số số hạng là (99-1):1+1=99(số)

Tổng là \(\dfrac{99\cdot\left(99+1\right)}{2}=99\cdot50=4950\)

1:

3*A=1*2*3+2*3*(4-1)+3*4*(5-2)+...+n(n+1)[(n+2)-(n-1)]

=1*2*3-1*2*3+2*3*4-2*3*4+...-(n-1)*n*(n+1)+n(n+1)(n+2)

=n(n+1)*(n+2)

=>\(A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

4 tháng 9 2023

cảm on nhonhung