tim x thoa man
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+13\right)=119\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2.(x+3)+y2.(y+5)−(x+y).(x2−xy+y2)=0
<=>\(x^3+3x^2+y^3+5y^2-x^3-y^3=0\)(áp dụng hằng đẳng thức)
<=> \(3x^2+5y^2=0\)
ta thấy \(3x^2\ge0\)với mọi x
\(5y^2\ge0\) với mọi y
=> \(3x^2+5y^2\ge0\)
=> x=0 và y=0
vậy cặp số (x;y)=(0;0)
để (x-1)(x+5)=1.->1=1.1=(-1)(-1)
x-1=1->x=2; x+5=1->x=-4
x-1=-1->x=-2; x+5=-1->x=-6
(x-1)(2x+6)........ làm tương tự .
Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:
\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)
\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)
Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)
Cộng vế:
\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)
\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)
Sau vài phút cố gắng thì khẳng định đề bài của em bị sai
\(y^2+2\left(x^2+1\right)=2\left(x+1\right)\)
\(\Leftrightarrow y^2+2\left(x^2+x+1\right)=2\left(x+1\right)\)
\(\Leftrightarrow y^2+2x^2+2x+2=2x+2\)
\(\Leftrightarrow y^2+2x^2=0\)
Vì \(x^2\ge0;y^2\ge0\)
\(\Rightarrow y^2+2x^2\ge0\)
Mà \(y^2+2x^2=0\)
Nên \(\hept{\begin{cases}y^2=0\\2x^2=0\end{cases}}\)
Hay x = y = 0
Ta có \(\frac{1}{P}=\frac{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)^2}{x^3y^3}=\frac{x+yz}{y}\cdot\frac{y+zx}{x}\cdot\frac{\left(z+xy\right)^2}{x^2y^2}\)
\(=\left(\frac{x}{y}+z\right)\left(\frac{y}{x}+z\right)\left(\frac{z}{xy}+1\right)^2=\left[1+\left(\frac{x}{y}+\frac{x}{y}\right)z+x^2\right]\left(\frac{z}{xy}+1\right)^2\ge\left(1+2x+x^2\right)\)\(\left[\frac{4x}{\left(x+y\right)^2}+1\right]^2\)\(=\left(z+1\right)^2\left[\frac{4z}{\left(z-1\right)^2}+1\right]^2=\left[\frac{4z\left(z+1\right)}{\left(z-1\right)^2}+1\right]^2=\left[6+\frac{12}{z-1}+\frac{8}{\left(z-1\right)^2}+z-1\right]^2\)
\(=\left[6+\frac{12}{z-1}+\frac{3\left(z-1\right)}{4}+\frac{8}{\left(z-1\right)^2}+\frac{z-1}{8}+\frac{z-1}{8}\right]\)
Áp dụng BĐT Cosi ta có:
\(\frac{1}{P}\ge\left[6+2\sqrt{\frac{12}{z-1}\cdot\frac{3\left(z-1\right)}{3}}+3\sqrt[3]{\frac{8}{\left(z-1\right)^2}\cdot\frac{z-1}{8}\cdot\frac{z-1}{8}}\right]^2=\frac{729}{4}\)
\(\Rightarrow P\le\frac{4}{729}\). dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=2\\z=5\end{cases}}\)
( x + 1 ) + ( x + 3 ) + ( x + 5 ) + ( x + 7 ) + ( x + 9 ) + ( x + 11 ) + (x + 13 ) = 119
x X 7 + ( ! + 3 + 5 + 7 + 9 + 11 + 13 ) = 119
x X 7 + 49 = 119
x X 7 = 119 - 49
x X 7 = 70
x = 70 : 7
x = 10
tk mk và gửi kết bạn cho mk nha huyền trang
các bạn cũng tk và gửi kết bạn cho mk nha
(x+1)+(x+3)+..+(x+13)=119
=>7x+(1+3+..+13) =119
=>7x+49 =119
=>7x =119-49
=>7x =70
=> x =10
Vậy x=10
Chúc bn hok giỏi!