Cho tam giác ABC vuông tại A, gọi D là trung điểm của AC , DE vuông góc với BC. Chứng minh EB^2 - EC^2 = AB^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm hơi tắt chút do ngại trình bầy cái định lý pi - ta - go ở tam giác BDE
Lời giải:
Xét tam giác $BED$ và $BAC$ có:
$\widehat{B}$ chung
$\widehat{BED}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BED\sim \triangle BAC$ (g.g)
$\Rightarrow \frac{BE}{BD}=\frac{BA}{BC}$
$\Rightarrow BE=\frac{BA.BD}{BC}=\frac{AB^2}{2BC}$
Có:
$EC^2-EB^2=(BC-EB)^2-EB^2=BC^2-2BC.EB=BC^2-2BC.\frac{AB^2}{2BC}=BC^2-AB^2=AC^2$
Ta có đpcm.
Vẽ đường cao AH \(\Rightarrow DE\parallel AH(\bot BC)\) mà D là trung điểm AB
\(\Rightarrow E\) là trung điểm BH \(\Rightarrow EB=EH\)
Ta có: \(EC^2-EB^2=\left(EC-EB\right)\left(EC+EB\right)=\left(EC-BH\right)BC\)
\(=CH.BC\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AC^2=CH.BC\Rightarrow AC^2=EC^2-EB^2\)
a) Xét ΔAKB và ΔAKC có:
AB=AC(gt)
AK:cạnh chung
BK=CK(gt)
=> ΔAKB=ΔAKC(c.c.c)
=> AKBˆ=AKCˆAKB^=AKC^
Mà: AKBˆ+AKCˆ=180oAKB^+AKC^=180o
=> AKBˆ=AKCˆ=90oAKB^=AKC^=90o
=> AK⊥BCAK⊥BC
b) Vì: EC⊥BC(gt)EC⊥BC(gt)
Mad: AK⊥BC(cmt)AK⊥BC(cmt)
=> EC//AK