Tìm 3 số biết rằng ước chung lớn nhất của 3 số đó là 12,3 số đó TLT với 4,6,15.Tìm số lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ba số cần tìm lần lượt là a,b,c
Ta có: 4a=6b=15c
Suy ra: \(\frac{a}{15}=\frac{b}{10}=\frac{c}{4}\)(nhân với \(\frac{1}{60}\)là bội chung của 4;6;15)
Đặt: \(\frac{a}{15}=\frac{b}{10}=\frac{c}{4}=k\)
Suy ra: a=15k ; b=10k ; c=4k
Theo đề bài, ta có:
UCLN(a;b;c)=\(3\times2^2\times k=12\)
Do đó: \(k=1\)
Nên:
a= 15
b=10
c=4
Vậy số lớn nhất trong ba số là 15
a)45 = 32.5
204 = 22.3.17
126 = 2.32.7
=> UCLN(a;b;c) = 3
b)có BCNN(a;b;c) = 22.32.5.7.17 = 21420
=>BCNN:UCLN=21420:3=7140
=> BCNN chia hết cho UCLN
HT
Gọi 2 số đó là: a,b (a,b ϵ N)
Tích của 2 số đó là:
a.b = ƯCLN.BCNN
⇒ a.b = 840 . 10
⇒ a.b = 8400
⇒ 120.b = 8400
⇒ b = 8400 : 120 = 70
Gọi \(\left(a;b\right)\) là 2 số cần tìm \(\left(a;b\inℕ\right)\)
Theo đề bài ta có :
\(\left\{{}\begin{matrix}UCLN\left(a;b\right)=10\\BCNN\left(a;b\right)=840\end{matrix}\right.\)
\(\Rightarrow UCLN\left(a;b\right).BCNN\left(a;b\right)=10.840=8400\)
mà \(UCLN\left(a;b\right).BCNN\left(a;b\right)=a.b\)
\(a=120\)
\(\Rightarrow b=\dfrac{8400}{120}=70\)
Vậy số còn lại là 70
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a + b = 66 (1)
GCD(a, b) = 6 (2)
Ta cần tìm hai số tự nhiên a và b sao cho có một số chia hết cho 5. Điều này có nghĩa là một trong hai số a và b phải chia hết cho 5.
Giả sử a chia hết cho 5, ta có thể viết lại a và b dưới dạng:
a = 5m
b = 6n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
5m + 6n = 66
Để tìm các giá trị của m và n, ta có thể thử từng giá trị của m và tính giá trị tương ứng của n.
Thử m = 1, ta có:
5 + 6n = 66
6n = 61
n ≈ 10.17
Vì n không là số tự nhiên, nên m = 1 không thỏa mãn.
Thử m = 2, ta có:
10 + 6n = 66
6n = 56
n ≈ 9.33
Vì n không là số tự nhiên, nên m = 2 không thỏa mãn.
Thử m = 3, ta có:
15 + 6n = 66
6n = 51
n ≈ 8.5
Vì n không là số tự nhiên, nên m = 3 không thỏa mãn.
Thử m = 4, ta có:
20 + 6n = 66
6n = 46
n ≈ 7.67
Vì n không là số tự nhiên, nên m = 4 không thỏa mãn.
Thử m = 5, ta có:
25 + 6n = 66
6n = 41
n ≈ 6.83
Vì n không là số tự nhiên, nên m = 5 không thỏa mãn.
Thử m = 6, ta có:
30 + 6n = 66
6n = 36
n = 6
Với m = 6 và n = 6, ta có:
a = 5m = 5 * 6 = 30
b = 6n = 6 * 6 = 36
Vậy, hai số tự nhiên cần tìm là 30 và 36.
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a - b = 84 (1)
UCLN(a, b) = 12 (2)
Ta có thể viết lại a và b dưới dạng:
a = 12m
b = 12n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
12m - 12n = 84
Chia cả hai vế của phương trình cho 12, ta có:
m - n = 7 (3)
Từ (2) và (3), ta có hệ phương trình:
m - n = 7
m + n = 12
Giải hệ phương trình này, ta có:
m = 9
n = 3
Thay m và n vào a và b, ta có:
a = 12m = 12 * 9 = 108
b = 12n = 12 * 3 = 36
Vậy, hai số tự nhiên cần tìm là 108 và 36.
1) \(a+b=66;UCLN\left(a;b\right)=6\)
\(\Rightarrow6x+6y=66\Rightarrow6\left(x+y\right)=66\Rightarrow x+y=11\)
mà có 1 số chia hết cho 5
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6.5=30\\b=6.6=36\end{matrix}\right.\)
Vậy 2 số đó là 30 và 36 thỏa đề bài
2) \(a-b=66;UCLN\left(a;b\right)=12\left(a>b\right)\)
\(\Rightarrow12x-12y=84\Rightarrow12\left(x-y\right)=84\Rightarrow x-y=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12.3=36\\y=12.4=48\end{matrix}\right.\)
Vậy 2 số đó là 48 và 36 thỏa đề bài
a) Đặt hai số cần tìm là \(a,b\)\(300< a\le b< 400\).
\(ƯCLN\left(a,b\right)=28\)nên đặt \(a=28m,b=28n\)khi đó \(10< m\le n< 15,\left(m,n\right)=1\).
Ta có:
\(b-a=28n-28m=28\left(n-m\right)=84\Leftrightarrow n-m=3\)
Kết hợp với điều kiện suy ra \(\hept{\begin{cases}m=11\\n=14\end{cases}}\Rightarrow\hept{\begin{cases}a=308\\b=392\end{cases}}\).
b) Tương tự a).
Gọi hai số cần tìm là a và b (a,b \(\in\)N)
Ta có (a,b) = 13 ; [a,b] = 91
=> a . b = 13 . 91 = 1183
Vì (a,b) = 13 nên a \(⋮\)13 ; b \(⋮\)13. Đặt a = 13p ; b = 13q [(p,q) = 1 ; p , q \(\in\)N]
13p . 13q = 1183
169 . pq = 1183
pq = 1183 : 169 = 7. Ta có bảng như sau :
p | 1 | 7 |
a | 13 | 81 |
q | 7 | 1 |
b | 81 | 13 |
Vậy (a,b) = (13,81) ; (81,13)