K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Lời giải:
ĐK: \(x\geq \frac{-4}{3}\)

BPT \(\Leftrightarrow x^2+6x+13-2\sqrt{3x+4}-3\sqrt{5x+9}\leq 0\)

\(\Leftrightarrow x^2+x+2(x+2-\sqrt{3x+4})+3(x+3-\sqrt{5x+9})\leq 0\)

\(\Leftrightarrow x(x+1)+2.\frac{(x+2)^2-(3x+4)}{x+2+\sqrt{3x+4}}+3.\frac{(x+3)^2-(5x+9)}{x+3+\sqrt{5x+9}}\leq 0\)

\(\Leftrightarrow x(x+1)+\frac{2x(x+1)}{x+2+\sqrt{3x+4}}+\frac{3x(x+1)}{x+3+\sqrt{5x+9}}\leq 0\)

\(\Leftrightarrow x(x+1)\left[1+\frac{2}{x+2+\sqrt{3x+4}}+\frac{3}{x+3+\sqrt{5x+9}}\right]\leq 0\)

\(\Leftrightarrow x(x+1)\leq 0\)

\(\Leftrightarrow -1\leq x\leq 0\)

Kết hợp với ĐKXĐ suy ra nghiệm của BPT là tất cả các số thực thuộc đoạn \([-1;0]\)

12 tháng 3 2019

Trình bày đẹp :v công thức ko bung biêng

NV
30 tháng 5 2020

a/ ĐKXĐ \(x\ge1\)

\(\Leftrightarrow2x+1+2\sqrt{x^2+x-2}< 3x+3\)

\(\Leftrightarrow2\sqrt{x^2+x-2}< x+2\)

\(\Leftrightarrow4\left(x^2+x-2\right)< \left(x+2\right)^2\)

\(\Leftrightarrow3x^2< 12\Leftrightarrow x^2< 4\Rightarrow-2< x< 2\)

Vậy nghiệm của BPT là \(1\le x< 2\)

b/ ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow3x-2+2\sqrt{2x^2-5x-3}< 5x-4\)

\(\Leftrightarrow\sqrt{2x^2-5x-3}< x-1\)

\(\Leftrightarrow2x^2-5x-3< x^2-2x+1\)

\(\Leftrightarrow x^2-3x-4< 0\Rightarrow-1< x< 4\)

\(\Rightarrow3\le x< 4\)

c/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow3x+1+2\sqrt{2x^2+3x-2}\ge6x-1\)

\(\Leftrightarrow2\sqrt{2x^2+3x-2}\ge3x-2\)

- Với \(\frac{1}{2}\le x< \frac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge\frac{2}{3}\) hai vế ko âm

\(\Leftrightarrow4\left(2x^2+3x-2\right)\ge\left(3x-2\right)^2\)

\(\Leftrightarrow x^2-24x+12\le0\) \(\Rightarrow\frac{2}{3}\le x\le12+2\sqrt{33}\)

Nghiệm của BPT là \(\frac{1}{2}\le x\le12+2\sqrt{33}\)

30 tháng 5 2020

Biết là hơi làm phiền nhưng anh có thể giúp em được k ạ :

Câu hỏi của Hàn Thất - Toán lớp 7 | Học trực tuyến

28 tháng 1 2019

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....

sao k ai trả lời zậy ta

 

6 tháng 4 2016

Nhấn máy tính: 

+ giải hpt x2-4x+3: mode=> 5:EQN=> số 3=> 1=> = => -4 => = => 3=> X1=3 => = => X2=1

=> Thay vào=> Đưa vô căn bậc 2.

+ giải hpt 2x2 -3x+1 tương tự như trên.

=> Sau đó thay vô. tính ra

Xin lỗi mình chỉ biết nhiêu đây. lớp 7. Thông cảm.

9 tháng 3 2019

\(\sqrt{3x^2+6x+12}+\sqrt{5x^2-10x^2+9}=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^2-2x+1\right)+4}\)

\(\ge\sqrt{9}+\sqrt{4}=3+2=5\)