K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

qwdddddddddddddddđqqqddddddddddddddddddddddddddddddddddddd09U*(9w bi  uehvuhytgvguvh eogeohseydđ qddddddasdewd 7fh 89

13 tháng 11 2021
Không làm mà đòi có ăn à
24 tháng 6 2015

Bài 2: Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.] 
Áp dụng định lý pythagore vào tam giác vuông BGE ta có: 
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1) 
Áp dụng định lý pythagore vào tam giác vuông CGD ta có: 
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2) 

mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có: 

BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2)  
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=> 
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=> 
BC = 2.(căn 5) cm

 

 

27 tháng 8 2015

Vì \(\Delta\)GDC vuông tại G nên theo định lý Py-ta-go ta có

\(DC^2=GD^2+GC^2\)(3)

Từ (1),(2) và (3) ta có 

\(BC^2=EB^2-EG^2+DC^2-GD^2=\left(\frac{AB}{2}\right)^2-EG^2+\left(\frac{AC}{2}\right)^2-GD^2\)

\(\Rightarrow BC^2=\left(\frac{6}{2}\right)^2-EG^2+\left(\frac{8}{2}\right)^2-GD^2=3^2+4^2-\left(EG^2+GD^2\right)=25-\left(EG^2+GD^2\right)\)(4)

Mà ta có ED là đường trung bình của \(\Delta ABC\) nên ta có \(ED=\frac{BC}{2}\)   (5)

Vì \(\Delta EDG\) vuông tại G nên áp dụng định lý Py-ta-go ta có 

\(ED^2=GD^2+EG^2\)  (6)

Từ (4),(5) và (6) ta có 

\(BC^2=25-ED^2=25-\left(\frac{BC}{2}\right)^2=25-\frac{BC^2}{4}=\frac{100-BC^2}{\text{4}}\)

\(\Rightarrow\text{4BC^2}=100-BC^2\)

\(\Leftrightarrow5BC^2=100\)

\(\Leftrightarrow BC^2=20\)

\(\Leftrightarrow BC=\sqrt{20}\)(cm)

Vậy \(BC=\sqrt{20}cm\)

4 tháng 7 2017

a/ ta có \(\hept{\begin{cases}\widehat{ACE}=\widehat{BCE}=\widehat{\frac{ACB}{2}}\\\widehat{ABD}=\widehat{CBD}=\widehat{\frac{ABC}{2}}\end{cases}}\)( tia phân giác )

mà \(\widehat{ACB}=\widehat{ABC}\)( tam giác cân)

nên ACE=BCE=ABD=CBD

xét tam giác ABD và tam giác ACE có

ABD=ACE(cmt) ; góc A chung ; AB=AC(tam giác cân)

=> tam giác ABD=tam giác ACE (G-C-G) => BD=CE

b/ ta có BCE=CBD (cmt) => tam giác BIC cân tại I

xét tam giácBIE và tam giác CID có

BI=IC(tam giác BIC cân) ; BIE=ICD(ABD=ACE) ; BIE=CID(2 góc đối đỉnh)

=> tam giác BIE= tam giác CID (G-C-G)

c/ ta có BD, CE là tia p/g cắt nhau tại I => I là gđ của 3 đg phân giác của tam giác ABC

=> AI là tia phân giác của BAC 

ta có AB=AE+BE ; AC=AD+DC 

mà BE=CD ( tam giác BIE= tam giác CID) ; AB=AC (tam giác ABC cân)

nên AE=AD => tam giác AED cân 

mặt khác AI là tia phân giác => AI là đường cao => AI vuông góc vs ED

ta có \(\hept{\begin{cases}\widehat{AED}=\frac{180^0-\widehat{A}}{2}\\\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\end{cases}}\)(tam giác cân)

=> AED=ABC

mà 2 góc nằm ở vị trí đồng vị => ED//BC 

4 tháng 7 2017

A B C E D I

A) Ta có \(\Delta\)ABC cân tại A =>góc ABC= góc ACB => \(\frac{1}{2}\)góc ABC =\(\frac{1}{2}\)góc ACB => góc DBC = góc ECB = góc DBE = góc DCE  

Xét \(\Delta\)ECB và \(\Delta\)DBC có

-góc DBC = góc ECB

- BC chung 

-góc EBC = góc DCB

=> \(\Delta\)ECB = \(\Delta\)DBC ( g.c.g )

=> CE =BD

B, Ta có góc IBC = góc ICB ( góc DBC =góc ECB chứng minh trên )

=> \(\Delta\)IBC cân tại I => BI = CI

Xét \(\Delta\)BIE và \(\Delta\)CID có 

- góc BIE = góc CID ( 2 góc đối đỉnh )

- IB =CI ( chứng minh trên )

- góc IBE =ICD ( chứng minh trên ý a )

=> \(\Delta\)BIE =\(\Delta\)CID (g.c.g)

C, Ta có AB =AC ( \(\Delta\)ABC cân tại A )

Mà BE =CD ( \(\Delta\) EBD =\(\Delta\)DCE )

=> AE =AD (1)

Lại có BD =CE ( chứng minh trên ý a )

Mà BI =CI ( chứng minh trên )

=> EI =ID (2)

Từ (1) và (2) => AI là đường trung trực của ED 

=> AI \(⊥\)ED 

Ta có \(\Delta\)EAD cân tại A có Ai là đường phân giác => góc EAI = góc DAI 

Lại có \(\Delta\)ABC cân tại A có AI là tia phân giác đồng thời là đường cao => AI \(⊥\)BC

\(\hept{\begin{cases}AI⊥DE\\AI⊥BC\end{cases}}\)

=> ED sog sog BC

Chúc bạn học giỏi 

 Kết bạn với mình nha