Chứng tỏ rằng:
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+....+\frac{1}{10^2+11^2}<\frac{9}{20}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét vế trái : \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{221}\)
ta có : \(T< \frac{1}{5}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{11}\right)< \frac{1}{5}+\frac{1}{4}\Rightarrow T< \frac{9}{20}\)
Đặt vế trái của Bất đẳng thức la A
\(A< \frac{1}{8}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{40}+\frac{1}{40}+\frac{1}{40}.\)
\(A< \frac{1}{8}+\frac{3}{10}+\frac{3}{40}=\frac{3}{10}< \frac{5}{10}=\frac{1}{2}\)
Trên máy mk hiển thị , câu hỏi này 4 phút nữa mới chính thức xuất hiện ,,, máy bị j hay do câu hỏi ak ??