K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 4 2021

Do S.ABCD là chóp tứ giác đều \(\Rightarrow SH\perp\left(ABCD\right)\Rightarrow SH\perp AC\)

Mà \(AC\perp BD\) (hai đường chéo hình vuông) 

\(\Rightarrow AC\perp\left(SBD\right)\Rightarrow\left(SAC\right)\perp\left(SBD\right)\)

b. Qua B kẻ đường thẳng song song AC cắt DC kéo dài tại E

\(\Rightarrow AC||\left(SBE\right)\Rightarrow d\left(AC;SB\right)=d\left(AC;\left(SBE\right)\right)=d\left(H;\left(SBE\right)\right)\)

\(\left\{{}\begin{matrix}AC\perp\left(SBD\right)\\AC||BE\end{matrix}\right.\) \(\Rightarrow BE\perp\left(SBD\right)\)

Trong tam giác vuông SBH, từ H kẻ \(HK\perp SB\Rightarrow HK\perp\left(SBE\right)\)

\(\Rightarrow HK=d\left(H;SBE\right)\)

\(BD=a\sqrt{2}\Rightarrow BH=\dfrac{BD}{2}=\dfrac{a\sqrt{2}}{2}\)

\(SH=\sqrt{SB^2-BH^2}=\dfrac{a\sqrt{3}}{2}\)

ÁP dụng hệ thức lượng:

\(HK.SB=SH.BH\Rightarrow HK=\dfrac{SH.BH}{SB}=\dfrac{a\sqrt{30}}{10}\)

NV
8 tháng 5 2023

a.

\(\left\{{}\begin{matrix}SO\perp\left(ABCD\right)\Rightarrow SO\perp AC\\AC\perp BD\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\) 

\(\Rightarrow AC\perp\left(SBD\right)\)

Mà \(AC\in\left(SAC\right)\Rightarrow\left(SAC\right)\perp\left(SBD\right)\)

b.

\(SO\perp\left(ABCD\right)\Rightarrow OC\) là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCO}\) là góc giữa SC và (ABCD)

\(OC=\dfrac{1}{2}AC=a\sqrt{2}\)

\(tan\widehat{SCO}=\dfrac{SO}{OC}=\sqrt{3}\Rightarrow\widehat{SCO}=60^0\)

c.

Gọi E là trung điểm CD, từ O kẻ \(OF\perp SE\)

OE là đường trung bình tam giác BCD \(\Rightarrow\left\{{}\begin{matrix}OE=\dfrac{1}{2}BC=a\\OE||BC\Rightarrow OE\perp CD\end{matrix}\right.\)

\(\Rightarrow CD\perp\left(SOE\right)\)\(\Rightarrow CD\perp OF\)

\(\Rightarrow OF\perp\left(SCD\right)\Rightarrow OF=d\left(O;\left(SCD\right)\right)\)

Do \(\left\{{}\begin{matrix}AO\cap\left(SCD\right)=C\\AC=2OC\end{matrix}\right.\) \(\Rightarrow d\left(AB;\left(SCD\right)\right)=d\left(A;\left(SCD\right)\right)=2d\left(O;\left(SCD\right)\right)=2OF\)

Hệ thức lượng: \(OF=\dfrac{OE.SO}{\sqrt{OE^2+SO^2}}=...\)

NV
8 tháng 5 2023

loading...

Gọi O là tâm của hình vuông ABCD

=>O là trung điểm chung của AC và BD

a:S.ABCD là hình chóp tứ giác đều nên SO vuông góc (ABCD)

mà \(SO\subset\left(SAC\right)\)

nên \(\left(SAC\right)\perp\left(ABCD\right)\)

b: BD vuông góc SO

BD vuông góc AC

\(SO,AC\subset\left(SAC\right)\)

=>\(BD\perp\left(SAC\right)\)

=>\(\left(SAC\right)\perp\left(SBD\right)\)

20 tháng 4 2022

Võ Ngọc Tú Uyênloading...  

1 tháng 6 2021

A B C D N S M P H K

a) (SAB) và (SAD) cùng vuông góc (ABCD), (SAB) và (SAB) có giao tuyến SA => SA vuông góc (ABCD)

=> BC vuông góc SA. Mà BC vuông góc AB nên BC vuông góc (SAB).

Ta cũng có BD vuông góc AS, BD vuông góc AC vì ABCD là hình vuông

=> BD vuông góc (SAC) hay (SAC) vuông góc (SBD).

b) Gọi M là trung điểm của AB, CM cắt AD tại P, H thuộc CM sao cho AH vuông góc CM, K thuộc SH sao cho AK vuông góc SH.

Dễ thấy AN || CM => AN || (SCM) => d(AN,SC) = d(AN,SCM) = d(A,SCM) = d(A,SMP)

Ta có AH vuông góc MP, MP vuông góc AS => MP vuông góc (HAS) => (SMP) vuông góc (HAS)

Vì (SMP) và (HAS) có giao tuyến SH, AK vuông góc SH tại K nên d(A,SMP) = AK

Theo hệ thức lượng thì: \(\frac{1}{AK^2}=\frac{1}{AS^2}+\frac{1}{AM^2}+\frac{1}{AP^2}\)

\(\Rightarrow d\left(AN,SC\right)=d\left(A,SMP\right)=AK=\frac{AS.AM.AP}{\sqrt{AS^2AM^2+AM^2AP^2+AP^2AS^2}}\)

\(=\frac{a\sqrt{2}.\frac{a}{2}.a}{\sqrt{2a^2.\frac{a^2}{4}+\frac{a^2}{4}.a^2+a^2.2a^2}}=\frac{a\sqrt{22}}{11}.\)

a: SO vuông góc (ABCD)

=>(SAC) vuông góc (ABCD)

b: AC vuông góc BD

BD vuông góc SO

=>BD vuông góc (SAC)

=>(SBD) vuông goc (SAC)

1: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

=>(SAC) vuông góc (SBD)

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

\(\left\{{}\begin{matrix}BD\perp SA\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)

\(\Rightarrow\left(SBD\right)\perp\left(SAC\right)\)

Chọn A

Chọn C