1. Cho 2^100 và 5^100. Lập thành 1 số. Hỏi số đó có bao nhiêu chữ số
2. Tìm các chữ số tự nhiên n để n^10 + 1 chia hết cho 10
3. Có tồn tại số tự nhiên n nào để n^2 + n + 2 chia hết cho 5 hay không
em nhờ online math và các bạn giải hộ em
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk chỉ làm câu b thôi
n^2 + n + 2
= n(n+1) + 2
giả sử n^2 + n +2 chia hết cho 5
=> n(n+1) chia hết cho5 ( vì 2 ko chia hết cho 5 )
mà n, n+1 là 2 số tự nhiên liên tiếp có thể có 1 số chia hết cho 5
Vd n= 4 và n+1 = 5
vậy vẫn tồn tại số tự nhiên n để n^2 + n + 2 chia hết cho 5
a) số 1 trên mũ hay ở dứoi
b) n^2+n=n(n+1) không có tận cùng là 3 hoặc 8 => n^2+n+2 không chia hết cho 5
c)
số chữ số 2^100=a
số chữ số 5^100=b
\(10^{a-1}<2^{100}<10^a\)
\(10^{b-1}<5^{100}<10^b\)
Nhân vế với vế
\(10^{a+b-2}<\left(2.5\right)^{100}<10^{a+b}\)
a+b-2<100<a+b
=> 100<a+b<102
a, b nguyên=> a+b=101
ds: 101