cho hai đa thức : P(x)=5x^3+6x^2-9x+4 . Q(x)=-5x^3-4x^2+9x+5 . chứng minh rằng : không tồn tại giá trị nào của x để hai đa thức P(x) và Q(x) có cùng giá trị không dương
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
17 tháng 6 2023
A(x)=5x^4-3x^3-7x^2+4x+2
B(x)=-5x^4+3x^3+6x^2-2x-30
A(x)+B(x)=-x^2+2x-28=-(x-1)^2-27<0
=>A(x) và B(x) ko đồng thời dương
CH
Cô Hoàng Huyền
Admin
VIP
1 tháng 6 2016
Ta có: \(P=2x^3+10x^2-6x+7;Q=-2x^3-10x^2+6x-7+2x^2=-P+2x^2\)
Như vậy \(P+Q=2x^2\ge0.\)
Nếu P và Q cùng âm thì ta thấy ngay \(P+Q< 0\)(Vô lý)
Vậy P và Q không thể cùng âm.
Chúc em luôn học tập tốt :)))
13 tháng 5 2022
a: \(P\left(x\right)=-5x^3+3x^2+2x+5\)
\(Q\left(x\right)=-5x^3+6x^2+x+5\)
b: \(H\left(x\right)=Q\left(x\right)+P\left(x\right)=-10x^3+9x^2+3x+10\)
Khi x=1/2 thì \(H\left(x\right)=-10\cdot\dfrac{1}{8}+\dfrac{9}{4}+\dfrac{3}{2}+10=\dfrac{25}{2}\)