Cho: S=\(3^0\) + \(3^2\) +\(3^4\) +\(3^6\) +.........+\(3^{2002}\)
a,Tính S
b,Chứng minh S\(⋮\)7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
Đấm vào chữ ĐÚNG giùm em ạ,
Ai bấm là người đẹp zai,xinh gái,quyến rũ....vv
Nói chung là rất đẹp
xin tick giùm em
a ) Nhân 9 vào 3 vế của S , ta được :
9S = 32 ( 30 + 32 + 34 + .... + 32002 )
=> 9S = 32 + 34 + 36 + .... + 32004
Lấy biểu thức 9S - S , ta được :
9S - S = ( 32 + 34 + 36 + .... + 32004 ) - ( 30 + 32 + 34 + .... + 32002 )
=> 8S = 32004 - 1
=> S = ( 32004 - 1 ) : 8
ý b tự làm !
Ta có : 32S = 32.( 30 + 32 + 34 + .... + 32002 )
=> 9S = 32 + 34 + 36 + .... + 32004
=> 9S - S = ( 32 + 34 + 36 + .... + 32004 ) - ( 30 + 32 + 34 + .... + 32002 )
=> 8S = 32004 - 1
=>S = \(\frac{3^{2004}-1}{8}\)
a, \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)
\(\Rightarrow9S=3^2+3^4+3^6+3^8+...+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\Rightarrow S=\frac{3^{2004}-1}{8}\)
b, Xét dãy số mũ : 0;2;4;6;...;2002
Số số hạng của dãy số trên là :
( 2002 - 0 ) : 2 + 1 = 1002 ( số )
Ta ghép được số nhóm là :
1002 : 3 = 334 ( nhóm )
Ta có : \(S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\)
\(S=\left(3^0+3^2+3^4\right)+3^6\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)
\(S=1.91+3^6.91+...+3^{1998}.91=\left(1+3^6+...+3^{1998}\right).91\)
Vì : \(91⋮7;1+3^6+...+3^{1998}\in N\Rightarrow S⋮7\) (đpcm)
S=\(3^0+3^2+3^4+3^6+.....+3^{2002}\)
3S=\(3^2+3^4+3^6+.....+3^{2002}+3^{2003}\)
3S-S=\(\left(3^2+3^4+3^6+....+3^{2002}+3^{2003}\right)-\left(3^0+3^2+3^4+3^6+....+3^{2002}\right)\)
S=\(3^{2003}-3^0\)
\(S=3^0+3^2+3^4+3^6+...+3^{2002}\)
\(\Rightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2002}+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2002}+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...3^{2000}+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-3^0=3^{2004}-1\)
\(\Rightarrow S=\frac{3^{2004}-1}{8}\)
b) S=(30+32+34)+...+(31998+32000+32002)
S= 91+...+31998(1+32+34)
S=91+...+31998.91
S=91(1+36+...+31998)
S=13.7.(1+36+...+31998) chia hết cho 7
a) S=30+32+34+...+32002
\(\Rightarrow\)9S=32+34+36+...+32004
\(\Rightarrow\)9S-S=(32+34+36+...+32004)-(1+32+34+...+32002)
8S=32004-1
\(\Rightarrow S=\frac{3^{2004}-1}{8}\)
b) Ta có : S=1+32+34+...+32002
=(1+32+34)+(36+38+310)+...+(31998+32000+32002)
=1(1+32+34)+36(1+32+34)+...+31998(1+32+34)
=1.91+36.91+...+31998.91
Mà 91\(⋮\)7 nên 1.91+36.91+...+31998.91\(⋮\)7
\(\Rightarrow S⋮7\)(đpcm)
a) S=30+32+34+36+.....+32002
=>32S=32+34+36+.....+32002+32004
=>9S-S=(32+34+36+.....+32002+32004)-(30+32+34+36+.....+32002)
=>8S=32004 - 1
=>S=(32004 - 1) / 8
b) S= 30+32+34+36+.....+32002
S=(30+32+34)+(36+38+310)+.....+(31998+32000+32002)
S=91+36(30+32+34)+.....+31998(30+32+34)
S=91.1+36.91+....+31998.91
S=91(1+36+....+31998) chia hết cho 7
=>S chia hết cho 7
Câu a mk ko chắc làm đúng ko nữa
a) S = 30 + 32 + 34 + ..... + 32002
9S = 32 + 34 + ..... + 32002 + 32004
9S - S = (32 + 34 + ..... + 32002 + 32004) - (30 + 32 + 34 + ..... + 32002)
8S = 32004 - 30
S = \(\frac{3^{2004}-1}{8}\)
b) S = 30 + 32 + 34 + ..... + 32002
S = (30 + 32 + 34) + (36 + 38 + 310) + ..... + (32000 + 32001 + 32002)
S = (1 + 9 + 81) + 36.(1 + 9 + 81) + ..... + 32000.(1 + 9 + 81)
S = 91 + 36 . 91 + ...... + 32000 . 91
S = 91 . (1 + 36 + ...... + 32000)
S = 7 . 13 . (1 + 36 + ...... + 32000)
thank you!!!♥♥♥