Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm k biết :
1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... +1/98.99.100 = 1/k ( 1/1.2 - 1/99.100 )
1/1.2.3+1/2.3.4+1/3.4.5+...+1/98.99.100=1/k.(1/1.2-1/99.100)
Vậy k=...
nói chung là: đặt tổng đó là E
suy ra:
2E=1/1.2-1/99.100
=> E=(1/1.2-1/99.100):2=(1/1.2-1/99.100).1/2
vậy k=2
2 đúng rùi
còn cách giải dài lắm
mk lười ghi
Tìm k biết:
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
Số k trong đẳng thức trên là?
A =1+1/1.2.3+1/2.3.4+...+1/98.99.100 . Biết 8A = 1/k .(1/1.2-1/99.100)tìm k
1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100 = 1/k .( 1/1.2 - 1/99.100 ). Số k trong đẳng thức trên có gí trị là?
Bày cách làm nha !
Tìm số nguyên k sao cho A=\(\frac{1}{1.2.3}.\frac{1}{2.3.4}.\frac{1}{3.4.5}.....\frac{1}{98.99.100}=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
1/1.2.3 +1/2.3.4+1/3.4.5+...+1/98.99.100 = ( 1/k . 1/99.100)
1/1.2.3+1/2.3.4+...+1/98.99.100=k.(1/1.2-1/99.100)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.............+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\). Số k trong đẳng thức trên có giá trị là