Cho tam giac ABC có các góc nhỏ hơn 1200. Vẽ ở phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi M là giao điểm của DC và BE. Chứng minh rằng: Góc BMC= 1200. Góc AMB=1200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) bạn xem trong câu hỏi tương tự
b) Lấy N thuộc MB kéo dài sao cho MN = MD => tam giác MND cân tại M có góc DMN = 60o (theo câu a) => tam giác MND đều
+) Ta có góc NDB + BDM = góc NDM = 60o
góc ADM + BDM = góc ADB = 60o
=> góc NDB = ADM mà có AD = DB ; DM = DN => tam giác ADM = BDN (c- g- c)
=> góc AMD = DNB = 60o
=> góc AMB = AMD+ DMB = 60o + 60o = 120o
Xét tam giác ADC và tam giác AEB có:
AD = AB(giả thiết)
\(\widehat{DAC}=\widehat{BAE}\)(\(=60^0+\widehat{BAC}\))
AC = AE( giả thiết)
\(\Rightarrow\)tam giác ADC = tam giác ABE (c-g-c)
\(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 góc tương ứng)
Xét tam giác ADI và tam giác BIM có:
\(\widehat{ADI}+\widehat{AIM}+\widehat{DAI}=\widehat{IBM}+\widehat{BIM}+\widehat{IMB}=180^0\)(theo định lí tổng 3 góc của tam giác)
Mà \(\widehat{ADI}=\widehat{IBM}\)(chứng minh trên)
\(\widehat{AID}=\widehat{BIM}\)(2 góc đối đỉnh)
\(\Rightarrow\widehat{DAI}=\widehat{IMB}\)
Mà \(\widehat{DAI}=60^0\)
\(\Rightarrow\widehat{IMB}=60^0\)
Ta có: \(\widehat{IMB}+\widehat{BMC}=180^0\)(2 góc kề bù)
\(\Rightarrow60^0+\widehat{BMC}=180^0\)
\(\Rightarrow\widehat{BMC}=180^0-60^0=120^0\)
Vậy \(\widehat{BMC}=120^0\)(ĐPCM)