cho đoạn thẳng BC Gọi I là trung điểm của BC Trên đường trung trực BC lấy điểm A(A khác I)
Kẻ IH vuông góc với Ab, kẻ IK vuông góc với AC
Chứng minh tam giác AHK cân
Chứng minh HK//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
1: Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BC chung
\(\widehat{DCB}=\widehat{EBC}\)
Do đó: ΔBDC=ΔCEB
2: Xét ΔABD vuông tại D và ΔACE vuông tại E có
BD=CE
AB=AC
DO đó: ΔABD=ΔACE
Suy ra: \(\widehat{ABD}=\widehat{ACE}\)
hay \(\widehat{IBE}=\widehat{ICD}\)
3: Xét ΔAIB và ΔAIC có
AB=AC
AI chung
IB=IC
Do đó: ΔAIB=ΔAIC
SUy ra: \(\widehat{BAI}=\widehat{CAI}\)
=>AH là tia phân giác của góc BAC
Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
a. Xét tam giác AIB và AIC, có
IB= IC ( I là trung điểm BC )
AI chung , AIB = AIC ( A là trung trục của BC )
suy ra 2 tam giac tren bang nhau
b. Cm
a: Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AI chung
IB=IC
Do đó: ΔAIB=ΔAIC
1, Xét △ABI vuông tại I và △ACI vuông tại I
Có: AI là cạnh chung
BI = CI
=> △ABI = △ACI (2cgv)
2, Chứng minh gì?
3, Xét △AHI vuông tại H và △AKI vuông tại K
Có: AI là cạnh chung
HAI = KAI (△ABI = △ACI)
=> △AHI = △AKI (ch-gn)
=> AH = AK (2 cạnh tương ứng)
=> △AHK cân tại A
b, Vì △AHK cân tại A => AHK = (180o - HAK) : 2 (1)
Ta có: △ABI = △ACI (cmt) => AB = AC => △ABC cân tại A => ABC = (180o - BAC) : 2 (2)
Từ (1) và (2) => AHK = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> HK // BC (dhnb)
Giải
1,a/ Xét tam giác AIB và tam giác AIC có:
BI = IC (gt)
^AIB = ^AIC (AI là đường trung trực của BC)
AI là cạnh chung
=> Vậy tam giác AIB = tam giác AIC (c.g.c)
2,a/ Vì ΔAIB = ΔAIC (cmt)
=> ^BAI = ^CAI (2 góc tương ứng)
Xét ΔAHI và ΔAKI, có:
^BAI = ^CAI (cmt)
AI chung (gt)
^AHI = ^AKI =90 độ (gt)
=> 2 tam giác = nhau
=> AH = AK (2 cạnh tương ứng)
=> tam giác AHK có 2 cạnh bằng nhau
b
Vì AH = AK (cmt)
=> ΔAHK cân tại A.
=> ^AHK = (180° - ^A) : 2 (1)
Lại có:
ΔAIB = ΔAIC (cmt)
=> AB = AC
=> ΔABC cân tại A
=> ^ABC = (180° - ^A) : 2 (2)
Từ (1) và (2)
=> ^AHK = ^ABC
Mà 2 góc đồng vị
=> HK // BC
=> ĐCPCM