K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

trái nghĩa với từ chắt chiu là gì

20 tháng 10 2019

trái nghĩa với từ chắt chiu là gì .

NV
31 tháng 5 2020

Ta có:

\(\frac{1+a}{1+9b^2}=a+1-\frac{9b^2\left(a+1\right)}{1+9b^2}\ge a+1-\frac{9b^2\left(a+1\right)}{2\sqrt{9b^2}}=a+1-\frac{3b\left(a+1\right)}{2}\)

Tương tự: \(\frac{1+b}{1+9c^2}\ge b+1-\frac{3c\left(1+b\right)}{2}\) ; \(\frac{1+c}{1+9a^2}\ge c+1-\frac{3a\left(c+1\right)}{2}\)

Cộng vế với vế:

\(Q\ge4-\frac{3}{2}\left(ab+bc+ca+a+b+c\right)=\frac{5}{2}-\frac{3}{2}\left(ab+bc+ca\right)\)

\(Q\ge\frac{5}{2}-\frac{1}{2}\left(a+b+c\right)^2=2\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

25 tháng 3 2017

cff333vvvvvvffffffdddd

26 tháng 3 2017

Bài 1: Câu hỏi của Neet - Toán lớp 9 | Học trực tuyến

28 tháng 11 2019

Áp dụng BĐT Bunhiacopxky :

\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)

\(\Rightarrow9a^3+3b^2+c\ge\frac{1}{\frac{1}{9a}+\frac{1}{3}+c}\)

\(\Rightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)

Thực hiện tương tự với các phân thức khác và cộng theo vế :
\(P\le\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{a+b+c}{3}+\left(ab+bc+ac\right)\)

\(P\le\frac{2}{3}+ab+bc+ac\)

Theo hệ quả quen thuộc của BĐT AM - GM :

\(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(\Rightarrow P\le\frac{2}{3}+\frac{1}{3}=1\Rightarrow P_{max}=1\)

Vậy GTLN của P là 1 khi \(a=b=c=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(1=\frac{1}{a}+\frac{4}{b}+\frac{9}{c}=\frac{9}{9a}+\frac{36}{9b}+\frac{9}{c}\geq \frac{(3+6+3)^2}{9a+9b+c}\)

\(\Rightarrow P\geq 144\)

Vậy $P_{\min}=144$

Dấu "=" xảy ra khi $\frac{3}{9a}=\frac{6}{9b}=\frac{3}{c}$ hay $a=4; b=8; c=36$

2 tháng 2 2021

Áp dụng bất đẳng thức Cô-si, ta có: \(\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}=\left(a-\frac{9ab^2}{1+9b^2}\right)+\left(b-\frac{9bc^2}{1+9c^2}\right)+\left(c-\frac{9ca^2}{1+9a^2}\right)\)\(\ge\left(a-\frac{9ab^2}{6b}\right)+\left(b-\frac{9bc^2}{6c}\right)+\left(c-\frac{9ca^2}{6a}\right)=\left(a+b+c\right)-\frac{3\left(ab+bc+ca\right)}{2}\)\(\ge\left(a+b+c\right)-\frac{\left(a+b+c\right)^2}{2}=\frac{1}{2}\)

Đẳng thức xảy ra khi a = b = c = 1/3

9 tháng 7 2019

Đặt \(\hept{\begin{cases}a=\frac{x}{y}\\b=\frac{y}{z}\\c=\frac{z}{x}\end{cases}}\) Ta có: \(A=\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}=\frac{1}{\frac{x}{y}+2}+\frac{1}{\frac{y}{z}+2}+\frac{1}{\frac{z}{x}+2}\)

\(=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}\)

Cần cm \(A\le1\Leftrightarrow2A\le2\)

\(\Leftrightarrow\frac{2y}{x+2y}+\frac{2z}{y+2z}+\frac{2x}{z+2x}\le2\)

\(\Leftrightarrow\left(1-\frac{2y}{x+2y}\right)+\left(1-\frac{2z}{y+2z}\right)+\left(1-\frac{2x}{z+2x}\right)\ge1\)

\(\Leftrightarrow\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\ge1\)

\(\Leftrightarrow\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xz}\ge1\)

bđt này đúng theo cauchy-schwarz. dấu bằng xảy ra khi a=b=c=1

25 tháng 7 2019

Thanks bạn nha Girl:>>