K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2015

ta có \(\sqrt{a}

17 tháng 6 2015

\(\sqrt{a}

23 tháng 6 2017

Ta có \(\sqrt{a}\)= a2

           \(\sqrt{b}\)=b2

          Vì a < b \(\Rightarrow\)a2 < b2 \(\Leftrightarrow\)\(\sqrt{a}\)<\(\sqrt{b}\)

23 tháng 6 2017

với a, b không âm nếu a < b <=> \(\sqrt{a}< \sqrt{b}\)

20 tháng 6 2019

\(2.\left(a+b\right)\ge a+2\sqrt{ab}+b\)(a,b >=0)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\)(luôn đúng với mọi a,b >=0)

Vì BĐT cuối đúng nên BĐT đầu đúng

20 tháng 6 2019

ta có:\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\sqrt{\left(a+b\right)^2}\ge\sqrt{4ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

Vì a,b là các số không âm nên \(\sqrt{ab}=\sqrt{a}.\sqrt{b}\)

\(\Leftrightarrow a+b+a+b\ge a+2\sqrt{a}.\sqrt{b}+b\)

\(\Leftrightarrow2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\left(ĐPCM\right)\)

11 tháng 7 2020

hgggggg

20 tháng 6 2019

Giả sử \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Đúng)

Vậy \(a+b\ge2\sqrt{ab}\)

P/S: Ko chắc , e ms lớp 7

20 tháng 6 2019

Ta có:\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\sqrt{\left(a+b\right)^2}\ge\sqrt{4ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\left(ĐPCM\right)\)