K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2022

Em mời có lớp 5 thôi

6 tháng 6 2023

 a, Vì tam giác ABC cân tại A

=> AB=AC, gócABC=gócACB

=> gócABD=gócACE

   Xét tam giác ABD và tam giác ACE có

AB=AC, gócABD=gócACE, BD=CE

=> tam giác ABD = tam giác ACE (c-g-c)

=> gócCAE=gócBAD

 b, Xét tam giác AMC và tam giác AFB có

gócAMC=gócAFB=90o, AC=AB, gócCAE=gócBAD

=> tam giác AMC = tam giác AFB (cạnh huyền góc nhọn)

=> AM=AF

=> tam giác AMF cân tại A

17 tháng 2 2022

1) -Ta có: \(\widehat{MBD}=\widehat{ACB}\) (△ABC cân tại A) và \(\widehat{ACB}=\widehat{NCE}\) (đối đỉnh).

\(\Rightarrow\widehat{MBD}=\widehat{NCE}\)

-Xét △MDB và △NEC có:

\(\widehat{MBD}=\widehat{NCE}\) (cmt)

\(BD=CE\)

\(\widehat{MDB}=\widehat{NEC}=90^0\)

\(\Rightarrow\)△MDB=△NEC (g-c-g).

\(\Rightarrow DM=EN\) (2 cạnh tương ứng).

2) -Ta có: DM⊥BC tại D, EN⊥BC tại E nên DM//EN

-Xét △EMN và △DNM có:

\(DM=EN\) (cmt).

\(\widehat{DMN}=\widehat{ENM}\) (DM//EN và so le trong).

MN là cạnh chung.

\(\Rightarrow\)△EMN=△DNM (c-g-c).

\(\Rightarrow\widehat{EMN}=\widehat{DNM}\) (2 góc tương ứng) nên ME//DN.

3) -Có điểm I rồi kẻ thêm điểm I nữa hả bạn?

17 tháng 2 2022

3) -Mình nói tóm tắt:

-Bạn chứng minh AK⊥BC tại K rồi từ đó chứng minh △OKB=△OKC (c-g-c) suy ra OB=OC.

-Bạn chứng minh △IDM=△INE (g-c-g) từ đó suy ra DI=IN và góc OKB, góc OKC là 2 góc vuông.

-Bạn chứng minh △OIM=△OIN(c-g-c) suy ra OM=ON

-Bạn chứng minh △OBM=△OCN (c-c-c) suy ra góc OBM= góc OCN.

-Bạn chứng minh △OAB=△OAC (c-c-c) suy ra góc OBM=góc OCA.

Suy ra góc OCN=góc OCA mà 2 góc này là 2 góc kề bù nên cùng bằng 900.

-\(S_{AOC}=\dfrac{1}{2}AC.OC\)

\(S_{AOC}=S_{AKC}+S_{OKC}=\dfrac{1}{2}AK.KC+\dfrac{1}{2}OK.KC=\dfrac{1}{2}KC\left(AK+OK\right)=\dfrac{1}{2}KC.OA\)

\(\Rightarrow AC.OC=CK.OA\)

\(\Rightarrow\dfrac{AC^2}{CK^2}=\dfrac{OA^2}{OC^2}=\dfrac{OA^2-AC^2}{OC^2-CK^2}=\dfrac{OC^2}{OK^2}\)

\(\Rightarrow\dfrac{AC}{CK}=\dfrac{OC}{OK}\)

\(\Rightarrow\dfrac{AC}{OC}=\dfrac{CK}{OK}\)

\(\Rightarrow\dfrac{CK.OC}{OK}=AC\)

\(\Rightarrow\dfrac{OK}{CK.OC}=\dfrac{1}{AC}\)

\(\Rightarrow\dfrac{OK^2}{CK^2.OC^2}=\dfrac{1}{AC^2}\)

\(\Rightarrow\dfrac{OC^2-CK^2}{OC^2.CK^2}=\dfrac{1}{AC^2}\)

\(\Rightarrow\dfrac{1}{CK^2}-\dfrac{1}{OC^2}=\dfrac{1}{AC^2}\)

 

 

1 tháng 6 2018

Chứng minh được tam giác ABD =  tam giác ACE (c-g-c) => AD = AE

Từ đó tam giác ADE cân tại A.

Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

Do đó: ΔABD=ΔACE

=>AD=AE

16 tháng 12 2021

a: Xét ΔADB và ΔAEC có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔADB=ΔAEC

Suy ra: AD=AE

hay ΔADE cân tại A

16 tháng 12 2021

a)

Chứng minh được tam giác ABD =  tam giác ACE (c-g-c) => AD = AE

Từ đó tam giác ADE cân tại A.