cho 2 số hữu tỉ a/b và b/c với b>0 và d>0. chứng minh rằng a/b < b/c <=> ad<bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có:
\(\frac{-1}{3}< 0\)
\(\frac{1}{100}>0\)
\(\Rightarrow\frac{-1}{3}< \frac{1}{100}\)
b)Ta có;
\(\frac{-231}{232}>-1\)
\(\frac{-1321}{1320}< -1\)
\(\Rightarrow\frac{-231}{232}>\frac{-1321}{1320}\)
c) Ta có:
\(\frac{-27}{29}< 0\)
\(\frac{272727}{292929}>0\)
\(\Rightarrow\frac{-27}{29}< \frac{272727}{292929}\)
Bài 2:
\(a\left(b+1\right)=ab+a\)
\(b\left(a+1\right)=ab+b\)
Mà \(a< b\)
\(\Rightarrow a\left(b+1\right)< b\left(a+1\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Xét số hữu tỉ a/b, có thể coi b > 0.
Nếu a, b khác dấu thì a < 0 và b > 0.
Suy ra (a/b) < (0/b) = 0 tức là a/b âm.
Cho số hữu tỉ a/b khác 0. Chứng minh rằng: a/b là số hữu tỉ dương nếu a và b cùng dấu.
Xét số hữu tỉ a/b, có thể coi b > 0.
Nếu a, b cùng dấu thì a > 0 và b > 0.
Suy ra (a/b) > (0/b) = 0 tức là a/b dương.
Xét 3 TH :
1) a < b
Khi đó ta có ab + 1a < ab + 1b hay a(b+1) < b(a+1)
Chia 2 vế cho b(b+1) ta được a/b < (a+1)/(b+1)
2) a = b ---> a/b = (a+1)/(b+1) = 1
3) a > b
Khi đó ta có ab + 1a > ab + 1b hay a(b+1) > b(a+1)
Chia 2 vế cho b(b+1) ta được a/b > (a+1)/(b+1)
Tóm lại
a/b < (a+1)/(b+1) nếu a < b
a/b = (a+1)/(b+1) nếu a = b
a/b > (a+1)/(b+1) nếu a > b
Qui đồng mẫu số:
a/b = a(b + 1)/ b(b + 1) = ab + 1a/ b(b + 1)
a+1/ b+1 = ( a + 1)b / (b + 1)b = ab+1b/ b(b+1)
Vì b>o nên mẫu của 2 phân số trên dương. Chỉ cần so sánh tử số:
So sánh ab+1a và ab+1b
+) Nếu a<b thì tử phân số thứ 1< tử phân số thứ 2
+) Nếu a=b => 2 phân số bằng nhau (=1)
+) Nếu a>b thì tử phân số thứ 1> tử phân số thứ 2