Cho tam giác ABC và tam giác MBC là hai tam giác cân có chung đáy BC.
Chứng minh:
a) AM là tia phân giác của góc BAC.
MA là tia phân giác của góc BMC.
b) AM vuông góc với BC.
GIÚP MK NHANH NHÉ MK ĐANG CẦN RẤT RẤT GẤP !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét tứ giác ABKC có
M là trung điểm của BC
M là trung điểm của AK
Do đó: ABKC là hình bình hành
Suy ra: AB//KC
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: Xét ΔMBC có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMBC cân tại M
c: Xét ΔAIH vuông tại I và ΔAKH vuông tại K co
AH chung
góc IAH=góc KAH
=>ΔAIH=ΔAKH
=>HI=HK
d: AI=AK
HI=HK
=>AH là trung trực của IK
Chú ý:Góc ngoài tam giác bằng tổng số đo 2 góc trog tam giác không kể với nó
Vậy góc(A1)+góc(A2)=góc(B)+góc(C) .(1)
Do Am là tia phân giác ngoài tại đỉnh A của tam giác ABC nên góc A1=góc (A2).(2)
Lại có tam giác ABC cân tại A do(AB=AC) nên góc (B)=góc(C).(3)
Từ(1);(2) và (3) =>góc(A1)+góc (A1)=góc (C)+góc(C)
Suy ra góc( A1)=góc(C) mà 2 góc này nằm ở vị ttrí so le nhau
Do đó Am//BC . (dpcm)
a) Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)
nên \(\widehat{ABC}+\widehat{MBC}=90^0\)(1)
Ta có: \(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)
nên \(\widehat{ACB}+\widehat{MCB}=90^0\)(2)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)(3)
Từ (1), (2) và (3) suy ra \(\widehat{MBC}=\widehat{MCB}\)
Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)
nên ΔMBC cân tại M(Định lí đảo của tam giác cân)
b) Xét ΔABM vuông tại B và ΔACM vuông tại C có
AB=AC(ΔABC cân tại A)
BM=CM(ΔMBC cân tại M)
Do đó: ΔABM=ΔACM(hai cạnh góc vuông)
⇒\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB,AC
nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)
Ta có: ΔABM=ΔACM(cmt)
nên \(\widehat{BMA}=\widehat{CMA}\)(hai góc tương ứng)
mà tia MA nằm giữa hai tia MB,MC
nên MA là tia phân giác của \(\widehat{BMC}\)(đpcm)
c) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: MB=MC(ΔMBC cân tại M)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)
Từ (4) và (5) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)
câu a: xét \(\Delta AMB\) và \(\Delta AMC\)có :
AB=AC(gt)
MB=MC(tam giác MBC cân)
AM là cạnh chung
\(\Rightarrow\Delta AMB=\Delta AMC\)(C.C.C)
\(\Rightarrow\)\(\widehat{BAM}=\widehat{CAM}\)
Vậy AM là tia phân giác\(\widehat{BAC}\)
B)
góc ABM= góc ACM= \(\frac{180º-20º}{2}-60º=20º\)
Vậy \(\widehat{ABM}=\widehat{ACM}=\widehat{BAC}\)
Xét tam giác ACM và tam giác ABM
CM=MB
góc B= goc C
AC=AB
SUY RA 2 TAM GIÁ BẰNG NHAU( c-g-c)
suy ra góc CAM= góc BAM
suy ra AM là tia phân giác
a)
Xét 2 tam giác vuông AMC và AMB có:
AM chung
BM=CM (gt)
=>\(\Delta AMC = \Delta AMB\) (hai cạnh góc vuông)
=> AC=AB (2 cạnh tương ứng)
=> Tam giác ABC cân tại A
b)
Kẻ MH vuông góc với AB (H thuộc AB)
MG vuông góc với AC (G thuộc AC)
Xét 2 tam giác vuông AHM và AGM có:
AM chung
\(\widehat {HAM} = \widehat {GAM}\) (do AM là tia phân giác của góc BAC)
=>\(\Delta AHM = \Delta AGM\) (cạnh huyền – góc nhọn)
=> HM=GM (2 cạnh tương ứng)
Xét 2 tam giác vuông BHM và CGM có:
BM=CM (giả thiết)
MH=MG(chứng minh trên)
=>\(\Delta BHM = \Delta CGM\)(cạnh huyền – cạnh góc vuông)
=>\(\widehat {HBM} = \widehat {GCM}\)(2 góc tương ứng)
=>Tam giác ABC cân tại A.
mình không giỏi hình học mình chỉ biết số học thôi bạn à
CHCUS BẠN HỌC GIỎI
TK MÌNH NHÉ